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Positivity conditions on the spin density matrix: A simple parametrization*
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A simple parametrization of the spin density matrix p is given which ensures that p is a positive,
Hermitian matrix which satisfies the parity symmetry conditions. There is a minimal number of
parameters and they can vary independently; no complicated constraints on their allowed region of
variation are required. A similar parametrization is given for the real part of p. Rank conditions,
polarized targets, and angular distributions are also discussed.

I. INTRODUCTION

In the determination of the spin density matrix
p of a particle, a resonance, or a more general
system from experimental data, it is very useful
to have a parametrization which ensures that all
the constraints to which p is subject are satis-
fied. ' Ideally, one would like a parametrization
using the minimal number of parameters which
automatically yields a Hermitian p satisfying the
positivity conditions, parity conditions, and rank
conditions, such as the Eberhard-Good theorem. '
This parametrization should be useful both for the
case where the system in question has a definite
spin and for the case where it is a mixture of dif-
ferent spins.

The main purpose of this paper is to present a
simple parametrization of p for a system produced
in a parity-conserving process such that the pa-
rameters can vary indePendently over a preas-
signed range (say, between -I and + I or 0 and
2v) and always yield a p such that

(a) p is Hermitian, p= p;
(b) p satisfies the symmetry imposed by parity

conservation in the production process;
(c) the eigenvalues of p, which are real, are

non-negative, and the matrix p is "positive";
(d) the rank r of p is in some cases smaller than

the dimension of p.

Most commonly, p is parametrized so that (a) and

(b) are satisfied and then (c) and (d) are imposed
as constraints. Daboul' has given several simple
parametrizations for which (a) and (c) are satisfied
but then (b) is imposed as a constraint. Both pro-
cedures have the disadvantage that the ranges over
which the parameters can vary are constrained in
a complicated way.

The parametrization we shall present here is a
generalization of that given by Daboul —he calls it
the Cholesky decomposition of p —.which guarantees
that (a)-(d) are satisfied in a very simple way. It

has the further practical advantage of utilizing
parity conservation (b) to break up the matrix into
matrices of smaller dimension. Furthermore,
when the system has a definite spin, the number
of parameters used is equal to the number of
measurable quantities. For the case of mixtures
of spins we generally have some extra parameters.
This method works for joint density matrices as
well.

We consider in this paper the density matrix p
of a resonance, or of a mixture of resonances and
background A, produced in a parity-conserving
process 4+ B-R+ C. (The nature of C is not im-
portant for these considerations. For definiteness
we assume it to be a system of definite mass,
spin, and parity. ) The key to our simplified pa-
rametrization is to introduce eigenstates of the
reflection operator II, corresponding to reflec-
tions in the production plane. The idea of employ-
ing "parity eigenstates" has been around for some
time. The application of this idea to the density-
matrix analysis has been carried out in the case
of bosons by Ascoli. '

We start in Sec. II by defining a complete set
of orthonormal eigenstates of the reflection oper-
ator. We then express p in terms of the reflection
eigenstates and give the connection to the conven-
tional basis. We review briefly the relation of p
to angular distributions and discuss the measur-
ability of the various elements of p. In Sec. III
we discuss the positivity conditions and present
our parametrization. Rank conditions require a
simple restriction on this parametrization and are
given in Sec. IV. Section V gives a brief account
of how some of these results are modified when a
polarized target is used. Section VI is devoted to
a few important examples for both bosons and
fermions as illustrations of this method. We give
in the Appendix the angular distributions for a
wide class of resonance decays and examine in
some detail the constraints due to parity conserva-
tion.
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II. PARITY CONSERVATION AND THE
REFLECTION OPERATOR

It has become a common practice to use the spin
density matrix p in the study of resonance produc-
tion with the rest frame for the resonance chosen
according to either the Gottfried-Jackson' (GJ) or
the s-channel helicity convention. Both of these
conventions, used for defining the spin quantization
axis of ~ in the process A. +B-A+C, belong to a
larger class of conventions in which the y axis is
normal to the production plane and the z axis (i.e.,
the quantization axis) lies along some preassigned
direction in the production plane. That direction
is p„ in the GJ convention and -p& in the s-channel
helicity convention, where p& and p& denote the
momenta of A and C in the rest frame of A.

The operator Il, of reflections in the production
plane is related to parity by a rotation through m

about the y axis:

(2.1)

The helicity states as defined by Jacob and Wick'o
satisfy

ll, lp, a, ~)=n(-I)' 'lp, a, -&); (2.2)

we use the notation a to stand for J", where J ()I)
is the spin (parity) of the state. Notice that this
result does not depend on which reference frame
is used to describe the process so long as p is in
the x-z plane, because II, commutes with Lorentz
transformations in the x-z plane and with rota-
tions about the y axis. In particular, it is true in
the rest frame of 8 with the spin of B quantized
along the z axis. This is a particularly useful op-
erator because it commutes with the S matrix and
leaves the momenta invariant; only the helicity
is changed. For our present purposes only the
helicity of A will be observed and so the reversal
of helicity of the others is unimportant.

For the state A in its rest frame, the eigen-
states of II, are given by

l sam) =[l am)+e)}(-I) l
a —m) ]6(m), (2.3)

where

6(m) = I/v 2, m &0

e =+i for fermions.

The eigenvalues are given by

II, I
«m)=e( —1)

I
@am). (2.4)

Notice that for bosons there is only one state for
m =0, the one with e =)I(—1) . The inverse of (3) is

l am) = g [l sam) 6(m)+)I(-1)~+™c*lea —m) 8(-m)] .

(2.5)

The spin density matrix of R in this basis is re-
lated to the usual density matrix by

"'p'„" =&eaml pie'a'm')

= [p"..+ ~*~'(-I)' ' (-I) nn'p". .
+p"..~*(-I)' n+p". .~'(-I)' )I']

x 6(m)6(m').

If parity is conserved

P" ~ = 7I)I'(- I)' '(-I)

(2.6)

(2.7)

Then the right-hand side of (2.6) vanishes unless
e = &', and p is diagonal in e as expected. Then

'P" =2[P" +e)I'(-I)' P" ]8(m-)8(m')

=2[p- ~ +a*))(—1)1 ™p".]6(m)8(m').

(2.8)
%'e shall call this the ref lectivity density matrix.
The transformation between these two bases is
unitary; for bosons it is orthogonal. The inverse
of (2 8) is

=o, m&0.

II,' =(-I)'~ requires that e' = (-I)'~ and orthogonal-
ity of the states (3) requires that me* = 1, so

a=+1 for bosons,

p" = g ['p" 8(m) 8(m')+a*)I'(-I) ' 'p" 8(m) 8(-m')

+&7)(—1) ' 'p" 6(—m)8(m')+g)I'( —1) (—1) 'p" 8(-m)8(-m')). (2.9)

In matrix language, '
p breaks up into subma-'

trices '
p and ' p in block diagonal form; i.e.,

I
~

(+)p 0

0 (-)p j
(2 9')

Constraints due to parity conservation are thereby
explicitly and completely taken into account.

The question of angular distributions, multipole
moments, and the like can be systematically
studied in terms of the eigenstates of II„Eq. (3).
These are dealt with in the Appendix.

So far we have specified the elements of the
density matrix only in terms of J, g, and m. In
general, they will depend on any other internal
variables that describe the state of R. For ex-
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ample, there should be indices specifying the
helicity, and the various subenergies (if H, decays
into three or more particles) as well as the
charge, strangeness, etc. of each of the particles
that constitute R. This presents no extra compli-
cations for variables such as energy or charge, in
which p is necessarily diagonal, or for variables
such as helicity if they are not measured. They
are then simply additional variables, like total
energy or momentum transfer, on which p must
depend. If one measures the helicity A. , for ex-
ample of the p in R- m+ p, then a larger density
matrix pq q must be used. In certain favorable
circumstances, the dependence on these additional
variables may factor off. This seems a reasonable
assumption when R consists of resonances. Then
the production and decay of R separate into two

steps and p can be taken to be the density matrix
resulting from the production step. There is no
clear reason why such an assumption should be
valid for the background, however. For any sys-
tem R consisting of a spin-0 and a spin-& particle,
parity conservation forces this factorization onto

p, the reason being that when J and g are given
the spin state is determined. For simplicity of
presentation in developing our analysis we will
usually ignore the extra variables. Since angular
momentum plays very little role in the way we
parametrize the matrix, it is a simple matter to
include them.

Of course, angular momentum plays a central
role in the measurement of p. We do not propose
to go into the general question of the measur-
ability of p here. This depends too much on the
details of the particular experiments that can be
done, the particles R decays into, the validity of
factorization hypotheses, etc. We do want to dis-
cuss briefly the case where R decays into two 0
or one 0 and one —,"particles. (See the Appendix
for a more complete treatment. ) If only angular
distributions are measured, it is well known that
only the real parts of the elements of p are di-
rectly measurable. One of the major uses of the
positivity conditions is that they constrain the
values of the unmeasured imaginary parts of p.
If R consists of a mixture of spins then there are
even more unmeasurable elements of p. Positivity
and rank conditions can be used to constrain these
as well, as we will illustrate later. The reason
not all elements of p are measurable is easy to
see: The angular distribution is given by"

X,aa'm, m'

xD~.„(y, 0, 0)E' E'

(2.10)

Here A. =O for bosonic R, E,=1, and X=+2 for
fermionic 8, E», =1/v 2, E», =(-1) ""g/~2.

By the usual Clebsch-Gordan series,

where

x Gi' D))(() (0, 8, 0),

G = Q (J'ZLoi JZ)E'„E', *.

Note that GP =0 unless (-1) =gq'.
The moments of the distribution are

(2.11)

H(IM) = f dAD (@90)I(t(,y)

ap".., (J m', LMl~m) G'r.'
a,a'm, m'

(2.12)

Hermiticity of p implies

H(LM) = (-I)"H+(L, -M)

and parity conservation implies

H(L, -M) = (-1) H(LM),

(2.13)

(2.14)

so the moments are all real. This prevents the
determination of Imp. In addition, because Gi'
depends on J and J' the sum on the right-hand
side of (2.12) cannot be inverted to allow solution
for Rep in terms of H(LM) if more than one 8 is
present. For example, in the case both 0' and 1
are present, not even all the diagonal elements of
p are measurable. Only the combinations
x = 2p,",+ p,",+ p,'0 and y = p",, —p,'0 are measurable.
Positivity can then be used to bound, for example,
the unmeasurable s-wave element poo both from
above and below.

III. PARAMETRIZATION OF THE DENSITY MATRIX

I et us consider a collection of several spin-
parity states. Let N be the dimension of the full
density matrix which describes these states and
their interferences. If these states are fermions,
the matrices ('ip are both (N/2) x (N/2) matrices.
In the case of bosons, the dimensionality of '

p
depends on the "naturality" of the bosons involved.
A spin-parity series with q =(-1) [7}=(—1) ''] is
termed the natural (unnatural) spin-parity series.
i,et K„(K„)be the number of natural (unnatural)
spin-parity states in the collection. Then the di-
mension of (')

p is &(N+K„-K„)and that of i )
p
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is —,'(N-K„+K„) because the m =0 states fall in
'p with e =g( 1)

The density matrix is in general given by

section, viz. , there exists a U such that

(3.3a)

(3 1)

f, „denotes the production amplitude for A with
spin parity + and helicity m; k denotes the unob-
served variables: the spins of the other particles
and, if appropriate, the production angles. As a
consequence of its definition, {3.1) is a Hermitian,
positive semidefinite matrix; i.e., all of its eigen-
values X; are real and X; ~ 0. If the sum in (3.1)
does not involve an integration then the rank of
p, r, is less than or equal to the number of dif-
ferent values the spin index k can take on. If
«N there will be additional constraints on p. '
In particular, N-r eigenvalues A, must equal zero.

The transformation to block diagonal form (2.9')
is unitary and so the submatrices 'p are also
positive. Our considerations will now be directed
toward these submatrices which are subject to no
additional constraints. (Rank conditions will be
discussed in the next section. ) Since these con-
siderations are completely general we will dis-
cuss an arbitrary, n &n positive semidefinite,
Hermitian matrix p with elements p;~.

It is useful to note that if a meson system A is
produced from a v or K beam by the exchange of a
Regge pole of definite naturality a, then asymp-
totically"

pm m' = ~z-&( 1) pram' ~

o~ denotes the naturality of A:

Hence, the exchange contributes only to the block
with

(3 2)

There are many equivalent ways of stating that
a matrix p is positive semidefinite —we will say
"positive" for short —which may be found in any
good book on matrices, for example that by
Halmos. " The basic one is our definition of p,
(3.1):

(3.1')

0

(3.3b)

X,. &0.

A third equivalent condition is

(3.3c)

(3 4)

p]; -0,
PsiP&g -I Prowl

Another way of checking the positivity has been
given by Dalitz' and Mnnaert. ' We list it for con-
venience: Introduce the characteristic polynomial
of p

4(X) =det(u —p)

(3.5)

Then a necessary and sufficient condition for
positivity is

CAPO (3.6)

for all k'. The simplest of these conditions are

C, =Trp-0,
C„=detp ~ 0.

for any complex vector
~ x) in the n-dimensional

vector space.
A consequence of these conditions is that all of

the principal minors of p are greater than or equal
to zero. (The principal minor is the determinant
of the matrix formed by removing any number of
rows from the matrix along with the columns which
intersect these rows on the main diagonal. ) These
conditions are often a useful test that can be used
to quickly test the positivity of p. The simplest
ones are the familiar conditions

or equivalently

p= VV (3 Ilf)

Our adaptation of Daboul's parametrization is
based on the decomposition (3.1') or (3.1"). It
uses the ambiguity of V up to multiples of a unitary
matrix to bring V to superdiagonal form:

The matrices V need not be square but they can
always be chosen to be so. This decomposition is
not unique; any matrix V'= VU where U is an ar-
bitrary unitary matrix will also do. An equivalent
definition was mentioned at the beginning of this

V . =0 j&i

with

I = —,'i(i —1) +j, j &i,

(3.7a)

(3.7b)
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y, ~0, 0 ~a, ~2m,

o., = 0 for l = w&'(i + 1);
(3.8)

i.e., the diagonal elements are real and positive.
If p is normalized so that Trp= 1 there is one

more constraint:
n(n+ y) /2

strations, but we give this one because it enables
one to calculate V from p. This can be useful in
practice, since one may have a trial p that can
serve as a starting point for the search for a more
accurate p. First, recall that the columns of U

in (3.3a) are the eigenvectors of p; viz. , define

j
u("' & via

y, =1 (3.9) U. =u'"'
iA

This can be satisfied automatically by introducing
a new set of parameters x~q. . . q xn(n+g)/2 with

y, =x, Q (1 —x„')'", l & —2n(n+1)
m=g

so that

pj u"') = Z„j u"'&.

Next define the matrix W = U(X)"'; i.e. ,

(3.13)

0&x

+n(n+ y) /2 ~ ~

(3.10)

For the unnormalized matrix there are —,'u(n+ 1)
parameters y, and ~(n —1) parameters a» the
sum equals n', the number of real parameters
which determines p. As mentioned earlier, for
an important class of reactions, only the real part
of p can be measured in the original basis. This
matrix, too, can be transformed to a parity-con-
serving basis by Eq. (2.8): Let Rep=(R. Then

'(R" = 2[(R" + eq'(-1) (R" ]

W, ~
——U;~(A, )'",

and the vectors j
W(' ) as the rows of W:

~(t) gr
~1 '

Now construct a set of orthonormal vectors
j
Z'' ) from the jW('~) by the Gram-Schmidt

process:

(I g i —x
j
Z(a))(Z(cz)

j ) j

W( ))(

j {I-g,'=,' jZ'"&(Z'"j)j W"'&
j

'

(3.14)

(3.15)

x 6(~)g(~'). (3.11) The matrix Z with

(+ )(Raa' ( -)(Raa'+-
mm' mm' ~ (3.12)

For bosons '(R" is also a real, symmetric,
positive matrix because the transformation is
orthogonal. We can use the same parametrization
for '(R as for p by simply setting e, =0 for all /

and letting y, range over positive and negative
values, except for the diagonal elements,
l =-',i(i+1) where y, can be chosen to be positive.
There are now —,'n(n+ 1) parameters, which again
is exactly the number that determines '(R.

For fermions the transformation (3.11) is not
real and so '(R is not in general a real matrix.
Thus the full set of parameters y, and ~, as in
(3.7) and (3.8) are needed. At first sight this
appears to be too many parameters: n' for '(R and
n' for (R. Notice, however, that

has the form

V= V3,

0 0 i o 0

0 . 0

V32 V33 ' ' 0

Z(~)4
is unitary, ZZ =1, and so

p=WW =WZ ZR'

But by construction

(Z"'
j
W"') =0

Consequently,

(3.17)

(3.18)

(3.19)

(For fermions ''(R and '(R always have the same
dimension. ) Thus, the parameters that give ('~(R

can also be used to give (R by simply changing
the sign of n. The total number for the full N&&N

matrix is then (i(i/2)' real parameters. A mo-
ment's thought will show that this is exactly the
number of real parameters needed to describe the
original matrix. (Recall that (R" =0 for fer-
mions. )

%'e now give a constructive proof of the decom-
position (3.1'), (3.7). There are simpler demon-

V„, Vn2 Vn3
'

Vnn

Notice that the diagonal elements V;; =(Z '
j W ' )

are positive real numbers. As a result there are
exactly n' real parameters needed to describe V
and hence p.

The same procedure works for '(R for bosons
except now U is replaced by a (real) orthogonal
matrix O. As a consequence the final decomposi-



638 S. U. CHUNG AND T. L. TRUEMAN

tion involves a real matrix V of the form (3.19)
which depends on 2n(n+ 1) real parameters.

IV. RANK CONDITIONS

If the sum over I2 in (3.1) involves a number of
terms r&N, the dimension of p, then the rank of p
equals r and N- r of its eigenvalues must vanish.
As a result, many of the positivity conditions,
which are inequalities, become equalities. Thus,
all principal mirrors of dimension greater than r
must vanish. Equivalently,

C„=O, k &r

' p" = Q [f. , 2+ e (-I)' 2'. ,„]
P = %1/2

x[f.. . „+e(—I)™q'f.. . „]*
x 8(m) 6(m') .

But

(4.3)

fam, -1/2 + ( I) Ifa-m, -l/2

+( 1)J-m+1/2'

+ e( I)j mq( I)J+m+ g/2~

= —v' —1 e[f, „,+e(-I)J ™qf, „,]. (4.4)

= ~ ~ =~ =0r+l r+2 n ~ (4.1)

Then by our construction
I
Wi'i) in (3.14) has only

r nonzero components, 8', ', 8",', . . . , lV
Hence the vectors

for C„of (3.5). Obviously, these conditions will be
relevant only when the sum in (3.1) does not in-
volve integrals over production angles, missing
masses, etc. , though they may be approximately
valid when the integrals are over small enough
regions that the variation of f, » can be neglected.
(Even stronger rank conditions may hold if R is
produced by exchange of a single Regge pole. ")

Qur parametrization can be easily adjusted to
impose these cond itions automatically. Suppose
the rank of our n&&n p is r. Order the eigenvalues
so that

Hence

p '= If,2/2 +. ( ) mfa -,y/2]

x [fm, „,+ (-1)~™r/'f, „,]*
x 8(m) 8(m'),

and 'p each have rank 1.
(b) Following the same procedure we write

P &I/= & 1/2

x [f. 2 .+ &(-I)' 2i'f.

x 8(m ) 6(m ') .
Again notice that

f,m, /2 a+E(-1)J ™Qam „,„

(4 5)

Z[') =0 i &r

Then by (3.18)

v„.= (z"'I w"')
and so

V;,. =0 for j &r .

(4.2)
and since v is summed over,

'p- ~ =2 Q [f. „,.+&(-I)' ™n'f. „,.l—
x [f.. ./, ,+ e (- l)~ ™gf, ,/2, ]*.

(4.8)

Thus we simply set y, = 0 in (3.7b) for I corres-
ponding to j&r.

How do the rank conditions apply to the sub-
matrices 'pV We will analyze here the two most
common cases:

so
P= & 1/2

(a) wN- wN*,

(b) wN-~N,

where Ã* is any nucleon resonance and M is any
boson resonance. If only the unobserved nucleon
spins are summed on, the full p has r = 2 in case
(a) and r =4 in case (b). We shall now show that
the nonzero eigenvalues are shared equally be-
tween '

p and p.
(a) According to (3.1)

Hence 'p each have rank 2."
The rank conditions on (R are not nearly as strong

because

6t /
= g V;»V*»+ Q V&»V»

k=l

and so in general has rank 2r.
The positivity conditions can often be combined

with the rank conditions to get constraints on the
unmeasured elements of p. The positivity condi-
tions alone cannot give a lower bound to

I Imp„I,
but they do give an upper bound. However, in
cases where the measured rank of S., r((R), is
greater than the rank of p, r(p), required by the
kinematics, then the imaginary part 8 of p cannot
vanish. The rank conditions on S are easily
stated: Given any two matrices A, B with C =A+ B,
then

r(C) &r(A)+r(B) .
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Letting C=(R, A. = p we have

r(/I ) - r(&) —r(P)

This theorem can be applied to the full matrices
or to any of the principal submatrices formed by
removing any number of rows and the correspond-
ing columns. In the simplest case of a matrix
of rank 1 one can calculate 8 up to a sign just
given (R. Notice that r(8 ) must be an even number
because the nonzero eigenvalues of an antisym-
metric Hermitian matrix necessarily occur in
pairs: If A. is an eigenvalue so is -A. .

V. POLARIZED TARGET

A polarized proton target can be described by a
2x2 density matrix r»~. The polarization vector
is given in the usual way:

p = tr(ro),

where o represents the Pauli matrices. Explicitly,

+ 1/2 2 1/2 -l/2, + 1/2

~ /
li L + 1/2, 1/2 1/2, + 1/2) I

PZ + 1/2 2+ 1/2 1/2 ) 1/2 '

For definiteness, let us use the s-channel helicity
convention. Then, the z axis is along the proton
momentum and the y axis along the production
normal. Now, combining r». with the scattering
amplitude f, one can write down for the density
matrix of a state (or states) in the final state the
follow ing:

(5.1a)

sity matrix discussed before.
It is a simple matter to see that the parity con-

ditions analogous to (2.7) are

(p")",=qq'( 1)' ' (-I) (p")- „,, (5.2a)

(p
II. J.)aa' ~~i( I)Z -J'( 1)m-m'(p Il, i)aa'

(5.2b)

Hence p'+ p" each have rank 1. Furthermore

(p'+ p")"- ~ =+ i(-1)' n'(p'+ p")" ~, (5 4)

Because of these parity conditions, the transforma-
tion (2.6) will bring p" to block diagonal form but

p and p will be off-diagonal in e. Then, for ex-
ample, in production of a meson resonance from
a m or a K by exchange of Regge poles, p and p

~t

get nonzero contributions only from interference
between poles of opposite naturality, while po and
p" depend only on interference between poles of
like naturality.

Let us restrict our attention now to the common
case where the polarization is normal to the plane.
All of our previous results then go through: p is
positive and can be brought to block-diagonal 'p
form by the unitary transformation (2.6); each '

p
can be parametrized as before. However, now the
rank conditions can be more restrictive. Consider
the two simple cases discussed in Sec. IV:

(a) 1/N- 1/N*. In this case

(p )mm' = (f l/a2mfa'm', 1/2+f la/m2f a lm/2) t

n aa'
(P")mm' = 2(fam. .l/2fa*'m', -1/2 fam, -l/2fa*'m', 1/2) &

(P + P )mm' (fam, l/2 + fam, -l/2)(fa'm', 1/2 + fa'm', -1/2)

(5.3)

Or, in terms of the polarization vector, one can
write

p=p'+p"P ~ n+p P P+p P (5.lb)

n denotes the normal to the production plane, P the
unit vector in the direction of the proton momen-
tum in the c.m. system. p' is the unpolarized den-

so when p'+ p" is reduced to block-diagonal form
it has only one nonzero block, that for & =+1, and
that block has rank l. Hence, as pointed out be-
fore, the imaginary part of p'+ p" can be calcu-
lated, up to a sign, given the real part of p + p",
which can be obtained by varying the degree of
polarization.

(b) 1/N-MN In addition t.o Eq. (3.6) for 'pa we need

( P )mm' = 22[fam 1/2, 1/2+ ~( 1) mfa -m 1/2, 1/2][fam' 1/2, 1/2 + ( 1) ) fa' -m' 1/2, -1/2]*

+2 [f. „.. „.+&(-I)''nf. „., „,][f. „.,„.+&(-I)' 2)'f. — ~ „.,„.]*0( )t'( (5 5)

Combining (4.6) and (5.5) we obtain

('pa+'p )" ~ =28(m)8(m'g[f, „,„,+e( l)™1If,„,1/2—]+2[f, „, „,+e(-I) r/f, »2 1/2]].

g / /

lI fa'm' 1/2, 1/2+ ~ ( 1) I fa' -m' 1/2, 1/2] + ll fa'm' 1/2, -1/2 + ~( 1) '0'fa'-m' 1/2, -1/2]]'* ' (5'6)
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This explicitly shows that 'p +'p" are each of
rank 1. Once again the imaginary parts of these
matrices can be calculated (up to a sign) given
only the real parts.

For a further discussion of these points, see
Ref. 15.

VI. EXAMPLES

%e give here a few simple but, in practice,
important examples to illustrate the methods out-
lined in the previous sections.

where

a d* e*

f*, ' 'p=(g)

e f c

(+ ) ss ss
poo poo ~

(+ ) pp pupoo- poo ~

i+ )p) ) p) )

(+ ) ps ss
Poo POO ~

(+ )pcs ~2p&s

(+ ) phd ~2 pDP

(-)g) i) + g)

(6.I)

From non-negativeness of the principal minors,
we obtain

a&0, b~0, c& 0 go0 (6.2a)

ac~
I
el', bc~ lfl', (6.2b)

abc+2Re(dfe") -al f I'+ bl el'+cl dl
' (6.2c)

These inequalities then express fully the positivity
conditions. Suppose the states s and P are pro-
duced in a reaction )iN-AN (with A standing for
both s and P). Then, the dimensionality r of the
unobserved spin space is 2, so that the Eberhard-
Good theorem amounts to taking the equality sign
in (6.2c). It should be noted that inequalities (6.2)
contain the positivity constraints ori pure spin-
parity states. As for the s state, a ~ 0 implies
that p,",- 0. The physical domain for the P state
is contained in the inequalities b ~0, c ~0, g~0,
and bc~

I
fl'. They lead to the well-known rela-

tions

A. Mixture of spin-parity states 0' and 1

Let us use the notations s and P to denote spin-
pairty states 0' and I . Since both spin-parity
states belong to natural series, the matrices ' 'p
and p have dimensions 3 and 1, respectively.
They may be written

pl', &
I p", ,I,

poo(pii —pi'-i)»l p', Dl' ~

(6.3)

ab o- ds', ac - es', bc -fs'
and (6.2c) reads

abc+ 2d+~eR ~ af~'+ be„'+ cd„'

(6.2d)

(6.2e)

where the subscripts denote the real part.
In some model calculations, such as those in-

volving the mass-dependent angular analysis, " it
is possible to determine both the real and the
imaginary part of the s-P interference terms (d
and e), while only the real part f for the pure P
state can be measured. In this case, the mea-
surable part of the density matrix ' 'p is not nec-
essarily positive; the only way to obtain the ap-
propriate positivity conditions is to explore the
relations (6.2c) in the space of the unmeasured
quantity fz and find the extremum; from (6.2b)

and from (6.2c)

bc -fs' (6.2f)

abc+ 2pR(de*)s + (de*)I' ~ af~'+ bl el '+ cl dl '.
(6.2g)

Next, we give a parametrization of '
p which

guarantees that it remains within the physical do-
main. Let

3' )p;, = Q V;,V,*., = ( Vq I V;) (i,j = I, 2, 3),

(6.4)

where
I V,.) = (V;„V;„V;,). Explicitly,

a=&v, lv, ), b=(v. l v.&, c=(v. lv, &,

d=&v, l v, &, e=(v, l v, &, f=(v, l v, ).
Then,

I V, ) = (y„0,0),

I v, ) = (y,e'", y„o),
I v.&=(y.e'"', y,e'", y.)

(6.6)

(6.6)

Note that, if )' = 2, the vectors
I V;) are defined in

In many decay modes, such as those into two
spinless particles, only the real part of p can be
determined owing to parity conservation in the
decay. The resulting density matrices Re' p and
Re )

p are again "positive"; however, the dimen-
sionality ~ of the unobserved spin space increases
to 4 (for the reaction )iN-AN), so that the Eber-
hard-Good theorem imposes no constraint. The
positivity conditions in this case are obtained by
substituting the real part for all the complex pa-
rameters appearing in (6.2). Equation (6.2a) re-
mains the same, while (6.2b) now reads
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2-dimensional space and y, =0 (Eberhard-Good
theorem).

With g =—y„ the trace condition

tr(' p+tr p=1

translates into

y 2=1.

a=(V, IU &, b=(V,
I

V &, e=(V, IV,&,
(6.10)

c=(w, l w, &, d=(w, l w, &, f=(w, l w, &,

where

I v,&=(y„o), lv, &=(y.e*"',y, ),
lw, &=(y., 0), Iw.&=(y,e'"S, y.)

(6.11)

From the trace condition we have the constraint

To guarantee this constraint, we reexpress the y s
in terms of the new variables x;:

yl
1

y,. = ~ (1 x ')"'x,. (i =2, 6),

6

(1 —x,')'" ,
k= 1

y'=1

so that in terms of the new variables x;
yl 1&

y,
='

[ (1 —x,')"'x, (i =2, 5),
k= 1

(6.12)

where 0 &x, &1 for i =1, 6,
Thus, we have found a new set of 9 independent

variables, x,. (i =1, 6), o.„o.„and a„which
guarantee that ("p remains within the physical
domain. If only the real part of '

p can be de-
termined, the parametrization involves merely
setting e2 =@4——@5=0 and requiring that -1 &x; &+1
(i = 2, 4, 5) and 0 - x, & + 1 (i = 1, 3, 6).

B. Mixture of spin-parity states 0 and 1

We take up this example in order to illustrate
the case of spin-parity states with mixed natural-
ity. We shall again use the notations s and P for
0 and 1 . The ref lectivity density matrices have
the form

where 0 & x, & 1 (i = 1, 5). Therefore, a set of sever
independent parameters x; (i= 1, 5), o.„and o.,
describes fully the space of '

p and p and guar-
antees that they remain within the physical domain

C. Mixture of spin-parity states 0' and 2'

We shall use the notations s and d for 0' and 2'.
Then the ref lectivity density matrices have the
form

(+)

where

e* c

(e bl tf dj

(+)
@oo —& oo

(+ )phd

pled

pPP

(-) ss ss
&oo =~oo ~

( -)
p

0'0
HAPP + pPP

(+ )pPP ~2p &P

(6.6)

where
(+ ) ss ss

&oo —&oo ~

(+ ) dd
~oo =~oo ~

(+ ) dd dd dd
11 ll 1 -1)

(+ ) dd dd dd
22 I 22 12 -2&

(+ ) ds ds

(6.13)

a&0, 5w0 co 0 do0

«-lfl'.

The positivity conditions assume the form

(6.9a)

(6.9b)

f pro 2p&o--
(+ ) pdd ~2pld

(+ )pcs ~2 ds

p (+ )odd ~2 pdd

(+ ) dd dd dd
21 21 2 -1&

If only the real part of p is measurable, we may
simply replace the absolute squares in (6.9b) by
es' and f~'.

We can parametrize '
p and p by setting

( -) dd dd+ dd
11 11 1 1 p

( -) dd dd ddm = ~22 =&22 —~2 -2

(-) dd dd+ dd
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a&0, b&0, c&0, d&0, l&0, e&0, (6.14a)

The positivity conditions are obtained by setting
all the principal minors of '

p non-negative,
y,. = II (1 —x„')'"x, (i = 2, 9),

9

y, o
= ' (1 —x~')' ",

(6.17)

a e~
&0,

&0

ae" f~

c
&0,

&0,
d

a h, ~
&Q

-0

(6.14b)

gg +
&Q

k=]

where 0 &x,. &I (i =1,9). Therefore, the desired
parametrization is accomplished with a set of 15
parameters [x, (i =1, 9), n„n„n„a.„a„and
o.,]. If Im''p is not measurable, we set the n s
to zero and let x; range from -1 to + 1, except
x„x„and x, which are kept within the range 0
to 1.

g+ p+

f g c v*
(6.14d)

If x=2, inequalities in (6.14c) and (6.14d) become
equalities. If only Re '

p are measurable, com-
plex variables in (6.14b), (6.14c), and (6.14d) are
replaced by their real parts; if r =4 in this case,
inequalities in (6.14) remain inequalities (no
Eberhard-Good theorem) Note .that (6.14a.), the
fourth to seventh inequalities of (6.14b), and the
third inequality of (6.14c) together constitute the
positivity conditions for the pure states s and d.

We give, as an example, the parametrizations
of '

p when & = 2. Let us write

'ip, , =(V,. I V, ) (i,j =1, 2, 3, 4),

p;; =(W, IW, ) (I, j=1,2),
(6.15)

b g* &0 e b P* & 0 g c v* «0,

f g c

(6.14c)

a e* f" k*

a

"p= d I

g pQ

')p= P Z u+

1+ 3+ 5+
D. Mixture of spin-parity states - and - (or pure state - ),

A mixture of states involving fermions is some-
what simpler to deal with, for the analysis does
not depend on the naturality of spin-parity states
as was the case with bosons. The ref lectivity
density matrices are 3&&3 matrices for either a
mixture of spins —, and 2 or a pure —, spin state
regardless of the intrinsic parities involved; we
have merely chosen here the positivity-parity
states as an example.

Let us use the notations s, P, and d to stand for
2', and 2'. Our first task is to explore the di-

mensionality r of the unobserved spin space. Con-
sider a reaction ~N- mA, where A stands for either
s and P or d. Then we see that r = 1. Next, con-
sider rrN- VR, where V stands for either a vector
or a pseudovector meson. Then we have & = 3.

The ref lectivity density matrices i'ip have the
form

where the vectors
I V;) and

I W;) are defined in
2-di mensional space. Then, wheIe, for a mixture of s and P,

(6.18)

I V,) = (y„o),
I V, ) = (y,e'"2, y, ),
I V, )= (y~e' 4, y,e'"5),

I v, ) = (y,e' "6, y,e'&),

IW, ) =(y. , o),
Iw ) =(y e'", y, ).

In order to satisfy the trace condition,
10

2 ]

we define

(6.16)

(+)~SSpSS+ZpSS

( ) u p

(+ )@PS p
PS + gp

P'S

(+ )p PS pPS + gp
PS

(+ i te Iu . yp

and the elements of p are the same as those of'
p with the sign of the second terms reversed.

(We use the convention whereby the subscripts of

p stand for twice the e component of spin. ) In the
case of a pure spin state d we have, in a compact
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form,

~»p ~ —p~ +i( )~~ ~i~p~~ (i j—I 2 3)

where n=2i —1 and m =2j —1.
The positivity conditions are

a&0, b&0, c-0, g&0, h&0,

aboIdI', ac~ IeI', fc IfI',
(6.19a)

(6.19b)

I V&) = (yg 0)

I V.) = (y.e'",x.),
I V.) = (x,e'"4, x.e' "5),

(6.25)

APPENDIX: ANGULAR DISTRIBUTION

and the corresponding x s are as given in (3.10).
Thus, the parametrization of 'p in this case in-
volves a set of seven parameters, x; (i = 1, 4),
A2 ~ Q~y and A5.

d b f* )0 P h u* )0. (6.19c)

v u e

Iif x = 1, "equals" signs prevail in (6.19b) and

(6.19c).j The positivity of a pure state s is con-
tained in a ) 0 and g ) 0, which may be written

(6.20)

The positivity conditions for a pure P state are,
from (6.19a) and (6.19b),

(pot ygpkn )(piny gpPP ) ) I
pPP gipon

I

2

(6.21)

If only Rep~~ are measurable, we have, noting
that p~~ (pt~ „) is purely real (imaginary),

phd') 0

p",, )0,
p ggpgs - (Repgg) + (Rep3 -g)

(6.22)

These relations follow from (6.21) if p~~ is re-
placed by Rep~~.

Assuming r=1, we now turn to the parametriza-
tion of ' p. Again, we set

"p;, =(V, IV, ), '-'p;, =&W, IW;)

(i, j = 1, 2, 3), (6.23)

where
I V;) and IW;) are vectors defined in one-

dimensional space,

I v, ) = (y, ), I w, ) = ( y, )

I V, ) = (y,e'"2),
I W, ) =(y,e'"5)

I V,)=(y,e'"3),
I W, ) =(y,e'"6)

(6.24)

and the x s which define y s are identical to those
given in (6.12). Therefore, the parametrization of
~ "p requires a total of nine variables, x, (i = 1, 5),
Q2 7 Q3 p

H 5 and n, . Suppose now that only Rep'„„'
can be measured. We have to deal with ' 8 only,
since ~ R is related to '@. Note that 'S is still
complex but that r=2 in this case. Therefore,

In order to illustrate how density matrices come
into the expressions for angular distributions, we
will take a concrete example of a resonance 8
(produced via AB-RC) with spin parity a =(J; q)
and a background with spin parity a', both of which
decay into two pions plus a particle with spin par-
ity s "~. We choose this example because it en-
compasses not only a wide variety of known reso-
nance decays but also simpler two-body decays
with certain parameters set to zero. "

Let R =(n, P, y) be the Euler angles which de-
scribe the orientation of a 3-particle system
(S+w+ w) in the helicity rest frame (z axis along

Cand y ax-is along the production normal). The
angular distribution in 8 can be broken up into
terms corresponding to contributions from spin
parity a, a', and the interference between them,
viz.

~

f(R) =g f-'(R)
a, a'

with the normalization

(A1)

I(R)dR = 1 . (A2)

The distribution I" (R) is given in terms of the
density-matrix elements as follows":

I (R) = N~N&i p i D &+(R) D && (R) P &yE& y+

where A is the helicity of s and summation is im-
plied over repeated indices. N~ is a normalization
constant,

(A4)

and I"'„q is the coupling constant with p. signifying
the z component of spin along a body-fixed z axis
(thus p is a rotational invariant). If it is chosen to
be along the normal to the decay plane of (s + ~+ m),

parity conservation in the decay demands that

&t ~=7in.(-)"'&;-~ (A6)

If R decays into a two-body system (s + w), the
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corresponding angular distribution is similar to that
that obtained by integrating (A3) over the angle y.
Thus,

I" (g) =2~N, N, .p".„D.'+(n) D.'.,(n) F', F; *,

(A6)

where Q=(n, P, 0). Parity conservation in the
decay demands that

GP = Q (J'A.LO
~
JX) F'g F'g * (A12b)

I"'(R}= Q, QIP' (LMN} D *(R) .
L 8w

NN

The "partial" angular distribution (AS) now has a
simple expansion in terms of the partial moments,

F'~=W.(-)' ' 'F'-~ (A7) (A13)

The distribution (A6) shows that two-body decays
into (s + w) can be treated by effecting the following
substitutions in (A3): R - Q, N~ - (2m)' 'N~,
p, or g'-~, and F„'& or F'„z-F'&. For this reason,
we shall henceforth consider in most instances
only the three-body decays into (s + w+ v) for the
sake of simplicity.

It is convenient for certain applications to ex-
pand the angular distributon (A3) in terms of the
moments. A moment, which can be measured ex-
perimentallyy,

II(LMN) = (D„',(R))

f
«' —g7/I( ) &+&f«'

and, from the hermicity of p,

(A14a)

while for the decay process, from (A5),

(A15a)

Let us at this point consider the consequences
of parity conservation. The conservation in the
production process implies, from parity conser-
vation,

dR I(R) Dss(R), (A8)
so that N is even (odd) if gq' is even (odd). Under
the interchange of a and a',

II(LMN} =g II" (LMN),
a, a'

where

II" (LMN) = f,",*G,"„. (A10)

The first factor is known as the multipole param-
eter, which is given by

(Alla)

is a sum of "partial moments" which specify con-
tributions from each spin-parity state (or the
interference between different spin-parity states),
VlZ. ) If the decay is into two bodies (s + n), from (A7)

and (A12b),

G," =qq'(-)'G," (A15c)

under the interchange of a and a', G~ transforms
as shown in (A15b) with N=O.

We have so far treated the problem of construct-
ing an expression for angular distribution (which
includes interference) in terms of the conventional
density-matrix elements. Our task now is to treat
the problem again starting from ref lectivity den-
sity-matrix elements. For this purpose, it is
necessary to define a new rotation function, with
K = E'g~

with the inverse given by "D~~ (R) = (sam ( R ( a p,), (A16}

2I. +1
(2J'+ 1) (2J'+ 1)

which is related to the conventional D functions
via [see (2.3)]

x f,-„'*(Z'm'LM~ Zm), (A11b) "D ~(R) =[D~~(R) +~*(-) D q( )R] 9(m),

(A17)while the second factor is related to the coupling
constant, and the complex conjugation is given by

fcD je(R) ( )
J+ fl K Dz (R) (A17')

Q~~ = J'p, 'I.N Jp. E'„&+'„& .

For the two-body decay (s +n),

(A12a)
Although they are not representations of the

rotational group, the new D functions have many
similar properties: They are orthonormal,
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( )
8m'dg'la 1* (g) '2D~2 (gh = 5l~ 1 2~2 2J ] 1 2 mlm2 ~l ~2 ~1~21+

From the fact that reflection eigenstates form a complete orthonormal set, one can easily show that

"LD L„(R) 'RD~R„(R) = Q («,J,m, «,J,m, ( «J,'m, ) (J,m, J2m, j J,m, ) "&D Rq (R),
3~S 3~S

(A18)

(A19)

where the first factor in the right-hand side is a new type of Clebsch-Gordan coefficient (complex in gen-
eral) which is related to the conventional Clebsch-Gordan coefficients via, from (2.3),

(«,J;m, «,J,m, i «J,m, ) =2[(J,m, J,m, i J,m, ) +«,"(-) (J, -m,J,m, i J,m, )

+«,*(-) R R(JLm, J, -m, i Jm, )+«(-) ' R(Jm,Jm, i J, -m, )] 8(m, )8(m, )8(m, )

with a constraint,

K3 = K1K2

(A20)

(A21)

(A22)

If this is not satisfied, the coefficient (A20) is identically zero. Using symmetry in the conventional
Clebsch-Gordan coefficients, the relation (A19) can be recast into a form more useful for our purposes,

"D ~(R)' D„„(R)=g 2
))(a'J' &LmM)xaam)(Z'u'LNIJu)' D (R)

LMN

with «i = ««'*. Combining this with (A18) we obtain

8mdR'D „*(R)"iD„„(R)"D „(R)=
I («'J'm'«iLMi«Jm) (J' p'LN(J'p) . (A23)

For completeness, we give here two different sum
rules for the new D functions. These relations
follow from the completeness of spin states,

with KL= KK'*=gq'. It can be shown that the above
quantity is simply proportional to the conventional
multipole parameters, viz. ,

and

Q "D'„*(R) "D'„(R)= 6„„ (A24) "gati„= 2 8(M) ti,~,
so that

"iH" (LMN) = 28 (M) H" (LMN) .

(A29a)

(A29b)

P " D.'.„(R) 'D.'„*(R)= 6„..6„„. (A25) In terms of these moments the angular distributions
(A26) assume the form

%e are now ready to give an expression for the
angular distribution in terms of ref lectivity den-
sity-matrix elements. It reads

I" (R) =N N 'p" "D „*(R)"D „(R)E yF„*,
(A26)

where K = eg and K' = eg', and summation over e is
implied. From (A23) we obtain the moment appro-
priate for this distribution,

"iH" (LMN) =('iD„'„(R))
t

tLM GLg

where the second factor is the same as in (A12)
and

2J'+1 '~'

e mm'

(A28)

I (R)=+( 8, )
"mR'" (LMR) "iD„„(R),

LM

(ASO)

where «z =ri)I'. Note that substitution of (A29b) and

(A17) into (ASO) brings back the angular distribu-
tion (A26).

Finally, we discuss briefly the measurability
of p. I et us consider for the sake of simplicity
the decay of R into (s+n) Under cer.tain circum-
stances, " the phase of Eq does not depend on A. .
Then, if the overall phase of Ez is absorbed into
p" ., we can set Ez to be real without loss of gen-
erality. In this case, it can be shown from parity
conservation in both the production and the decay
of 8 that

I"(0) +I' '(0) =4nN+N~ Rep'„'„Re[D„q(Q) D~i &(Q)]

(A31)
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so that only the real part of p" can be measured.
Note that I'z can be considered real in general if
s = 0 or s = —,'. Therefore, in these cases one can
determine only the real part of p. Since e is real

for bosons, it follows that only the real part of
aa''p" can be measured; however, this does not

apply to fermions, since e is purely imaginary.
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