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1 Introduction

The purpose of this note is to point out that the C operation can be defined in such

a way that a unique value can be assigned to all the members of a given JPC nonet. In

conventional treatments in which antiparticle states are defined through C, one encounters

the problem that anti-particle states do not transform in the same way (the so-called

charge-conjugate representation). That this is so is obvious if one considers the fact that

a C operation changes sign of the z-component of the I-spin, so that in general C and I

operators do not commute. In our treatment, the anti-particle states have been defined so

that they transform under isospin rotations in exactly the same way as those of particle

states. This allows for use of the same SU(2) Clebsch-Gordan coefficients for particle and

anti-particle states, a distinctive advantage in phenomenological applications.

Arbitrary parameters in the problem have been carefully chosen so as to obtain con-

ventional formulae for CP -eigenstates of neutral kaons K0 and K̄0. Anti-quark states,

conventionally, are defined such that they do not transform in the same way as those

quark states. The relationship of our definition to this more conventional one is also

pointed out.

As illustrative examples, states of particle-antiparticle systems are worked out, in

which use is made of the symmetry under interchange of two wave functions (spin statis-

tics). A treatment of two-, three- and four-body channels which contain KK̄ states, i.e.

KK̄ (at the end of Section 4 and Section 5), KK̄π (Section 6), KK̄ππ (Section 7), is

worked out in some detail, in particular to point out several non-trivial results regarding

the system.

The appendix is devoted to an exposition of the systematics concerning CP -violating

parameters εS and εL for the neutral K mesons KS and KL.
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2 G-and C-parity Operations

We shall adopt a notation ‘a’ to stand for both the baryon number B and hypercharge

Y = B + S. Anti-particles are denoted ‘ā’, so that

a = (B, Y ), ā = (B̄, Ȳ ) = (−B,−Y ) (1)

In addition, we shall use y to denote Y/2;

y =
Y

2
=

1

2
(B + S), Q = y + ν (2)

where S, Q, ν are the strangeness, the charge and the third component of isospin, respec-

tively.

We start with a state having an isospin σ and its third component ν which transforms

according to the standard |jm〉 representation. Let I be the isospin operator. Then,

Iz|σν〉 = ν|σν〉

I±|σν〉 = F±(ν)|σν ± 1〉

I2|σν〉 = σ(σ + 1)|σν〉

(3)

where I±=Ix± iIy and

F±(ν) =
√

(σ ∓ ν)(σ ± ν + 1) (4)

Note that F±(ν) = F∓( −ν). We shall require that anti-particle states transform in the

same way as their particle states according to (3).

The C operation changes a state |aν〉 to |ā −ν〉. (We use a shorthand notation where

the isospin σ is omitted from a more complete description of the state |aσν〉.) If anti-

particle states are to transform in the same way as particle states, it is necessary that

one define an anti-particle through the G operation. The key point is that G is defined

so that its operation does not perturb the ν quantum number. To define the G operator,

we need to first introduce a rotation by 180◦ around the y-axis:
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Ry(π)|σν〉 = (−)σ−ν |σ −ν〉 (5)

It will be shown later that Ry(π) commutes with the C operator. We therefore define

the G operator through

G = CRy(π) = Ry(π)C (6)

We are now ready to define an anti-particle state via

G|aν〉 = g|āν〉

G|āν〉 = ḡ|aν〉
(7)

and require that g and ḡ be independent of ν and furthermore that an arbitrary isospin

rotation R commutes with G:

[R,G] = 0 (8)

The action of C on particle and anti-particle states is readily discerned through (5)

and (6);

C|aν〉 = g(−)σ+ν |ā−ν〉 (9)

C|āν〉 = ḡ(−)σ+ν |a−ν〉

It is customary to define C such that C2 = + 1, in which case

gḡ(−)2σ = +1 (10)

For hadrons, we shall define g and ḡ via

g = η(−)y+σ, ḡ = η(−)ȳ+σ (11)

while for quarks,

g = η(−)B+y+σ, ḡ = η(−)B̄+ȳ+σ (12)

Note that the exponents in these expressions are always integers. Note in particular that,

for quarks, B and B̄ are needed to make the exponents integers. The quantity F defined

by

F = 2B + Y and f =
1

2
F = B + y =

1

2
(3B + S) (13)
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will be termed the ‘intrinsic flavor’ of a particle. Note that the intrinsic flavor, together

with S and 2I which characterize a particle, are always integers, as shown in the following

table:

states

(
u

d

)
s π η K

(
p

n

)
Λ Σ Ξ ∆ Ω−

F 1 0 0 0 1 3 2 2 1 3 0
S 0 −1 0 0 +1 0 −1 −1 −2 0 −3
2I 1 0 2 0 1 1 0 2 1 3 0

It is seen that the intrinsic flavor of an anti-particle is the negative of that of the particle,

i.e. F̄ = −F . With these definitions, we can make η a real number and let it take on

values of +1 or−1, so that η2 = +1. Then, we have,

C2 = +1, G2 = (−)2σ (14)

conforming to the standard expressions. An identity of a particle and its antiparticle

partner can now be expressed by, instead of (1),

b = (3B, S), b̄ = (3B̄, S̄) = (−3B,−S), f =
1

2
F =

1

2
(3B + S)

So a particle and its antiparticle partner can be identified by either a = (B, Y ) or by

b = (3B, S). The latter has the advantage that the arguments of b are always integers

for both quarks and particles. Its sum F = 3B + S ( the intrinsic flavor) and S, which

may be grouped together in c = (F, S), may also be used to designate a particle and its

antiparticle partner. Both F and S are integers for all particles, including quarks, and

F ≥ 0 for all particles (so antiparticles come with F̄ ≤ 0). For example, the s quark

is characterized by (F, S) = (0,−1) and s̄ by (F̄ , S̄) = (0,+1), while Ω− is denoted by

(F, S) = (0,−3) and Ω̄+ by (F̄ , S̄) = (0,+3). To take one final example, consider the

doublet {u, d}; it is characterized by (F, S) = (1, 0), whereas its antiparticle counterpart

{ū, d̄} is given by (F̄ , S̄) = (−1, 0).

We have adopted two different definitions for g—one for hadrons and another for

quarks; however, we could have chosen a single convention in which the expression (12)
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is used for both hadrons and for quarks. The factor (−)B for mesons is +1, while it is -1

for baryons, but the extra minus sign could be simply absorbed into η. Although it might

be aesthetically pleasing to have a single definition for g (along with the ‘intrinsic flavor’

F defined above), we choose to opt for more transparent definitions.

From (3) and (9), it is easy to work out the commutation relations between C and I;

{C, Ix} = {C, Iz} = 0, [C, Iy] = 0 (15)

ln other words, C anti-commutes with Ix and Iz while it commutes with Iy. This gives

a ready justification of the definition of G-parity given in (6). From (8), we can further

deduce that

CRC−1 = Ry(π)RR−1
y (π) (16)

This shows that the actions of I-spin rotation under charge-conjugation can be expressed

in terms of I-spin 180◦ rotations.

We end this section by recapitulating the actions of G and C. For hadrons, we have,

from (7), (9) and (11),

G|aν〉 = η(−)y+σ|āν〉

G|āν〉 = η(−)ȳ+σ|aν〉
(17)

also

C|aν〉 = η(−)y−ν |ā −ν〉

C|āν〉 = η(−)ȳ−ν |a −ν〉
(18)

and, likewise, for quarks we have,

G|aν〉 = η(−)B+y+σ|āν〉 (19)

G|āν〉 = η(−)B̄+ȳ+σ|aν〉

C|aν〉 = η(−)B+y−ν |ā −ν〉 (20)

C|āν〉 = η(−)B̄+ȳ−ν |a −ν〉

Note that ȳ = −y and B̄ = −B. It is worth emphasizing again that all the exponents

in (17) through (20) are integers. Note in addition that only the u and d quarks have
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I-spin flavors under strong interactions. So, in practice, (19) and (20) apply only to these

quarks, although s and other heavier quarks, c, b and t, can also be described in the same

fashion with σ = 0 and the strangeness S replaced by heavier flavors C(= +1), B(= −1)

and T (= +1). Here B stands for the “Bottom” flavor and not the baryon number B, a

notation we use elsewhere in this note.

We come back to the concept of the intrinsic flavor F = 2f of a particle, in order to

come up with a uniform description of quarks and particles. Replacing a = (B, Y ) by

b = (3B, S) in the ket states, we can write

G| b ν〉 = η(−)f+σ| b̄ ν〉, G| b̄ν〉 = η(−)f̄+σ| b ν〉
C| b ν〉 = η(−)f−ν | b̄ −ν〉, C| b̄ν〉 = η(−)f̄−ν | b −ν〉

It may be worth repeating once more: the intrinsic flavor F is a non-negative integer

for any quarks or elementary particles. The species of particles covered in this note,

including quarks, are uniquely specified by the integer “quantum numbers” {F, S, 2I},
where F = B + Y [see (13)]. See the preceding table for a list of quarks and particles.

3 Examples of Single-Particle States

Nonstrange neutral mesons have, of course, a = ā, y = ȳ = 0 and ν = 0. The

expression (18) shows that a state |aν〉 is in an eigenstate of C with the eigenvalue η.

Nonstrange charged or neutral mesons are, according to (17), in an eigenstate of G with

the eigenvalue η(−)σ, a familiar result. Since the expressions (17) and (18) are general

and applies to all hadrons, it is natural to extend to the strange members of a given

JPC nonet the same η which is determined for only the nonstrange neutral member of

the family. It should be borne in mind, however, that the value of η cannot be directly

determined for strange mesons.

As a first example, let us take the π nonet (JPC = 0−+) and exhibit the actions G and
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C. Here η = +1 and so the actions of C and G for all the members of the nonet are a

Gπ = −π, and Gη = +η

C π± = −π∓, C π0 = +π0, and C η = +η
(21)

and

G

K+

K0

 =

−K̄0

−K−

 , G

K̄0

K−

 =

+K+

+K0


C

K+

K0

 =

+K−

−K̄0

 , C

K̄0

K−

 =

−K0

+K+

 (22)

The eigenstates of CP for a neutral K system is now given by the familiar relations.
|K1〉 =

1√
2

(|K0〉+ |K̄0〉)

|K2〉 =
1√
2

(|K0〉 − |K̄0〉)
(23)

where the physically-allowed neutral K states KS and KL are nearly equal to K1 and K2,

respectively—but not identical—due to CP -violation in their decays (see Appendix). The

actions of G and C operators on the ρ nonet can be obtained by replacing the particles

in (21) and (22) by those of the ρ nonet and reversing all the signs, since the parameter

η of the previous section is now -1 for this nonet.

The nonet of ground-state baryons containing nucleons can be defined in a similar

way as in (21). Since the neutral members are no longer in an eigenstate of C or G, we

arbitrarily set η = +1 for this nonet (or η = −1 if the intrinsic flavor is used):

G|p〉 = −|n̄〉, C|p〉 = +|p̄〉 (24)

G|n〉 = −|p̄〉, C|n〉 = −|n̄〉

G|n̄〉 = +|p〉, C|n̄〉 = −|n〉 (25)

G|p̄〉 = +|n〉, C|p̄〉 = +|p〉

Other members of the nonet, Λ, Ξ, Σ, can be worked out in a similar way.

a The parameter η used in the previous section should not be confused with the particle η of the π
nonet.
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From (19) and (20), it can be seen that the up- and down-quark states will transform

in exactly the same way as in (24) and (25) if we again set η = +1; merely replace p and

n in these formulae by u and d. We exhibit isospin 0 and 1 states for quark-antiquark

systems:

|00〉 =
1√
2

(
|u〉|ū〉 − |d〉|d̄〉

)
|10〉 =

1√
2

(
|u〉|ū〉+ |d〉|d̄〉

) (26)

where we have used the usual Clebsch-Gordon Coefficient tables. However, it has now

become customary to define antiquark states via C operations as follows,

C|u〉 = +|ū〉c, C|d〉 = +|d̄〉c (27)

C|d̄〉 = +|d〉c, C|ū〉 = +|u〉c

where the subscripts c have been introduced to distinguish these from our definition of

antiparticle states as given in (24) and (25). It is clear that the up-quark states transform

in the same way, but the down-quark states differ by a minus sign. In terms of the more

conventional definitions (27), the isospin 0 and 1 now read

|00〉 =
1√
2

(
|u〉c|ū〉c + |d〉c|d̄〉c

)
|10〉 =

1√
2

(
|u〉c|ū〉c − |d〉c|d̄〉c

) (28)

It is in these forms that one encounters most often the isospin states of quark-antiquark

systems. One must not forget, however, that these antiquark states do not have the

‘correct’ isospin rotation properties.

4 Two-Particle States

We shall work out here the effect of C and G operations on a particle-antiparticle

system in an eigenstate of total isospin, total intrinsic spin, orbital angular momentum

and total spin. We use the notations I, S, ` and J for these quantum numbers. (Note that

I was used as an isospin operator and S denoted strangeness in Section 2.) Each single-

particle state in the two-particle center-of-mass(CM) system will be given a shorthand
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notation,

|a,+~k, ν1,m1〉 = |a,+~k, σ1ν1, s1m1〉 (29)

|ā,−~k, ν2,m2〉 = |ā,−~k, σ2ν2, s2m2〉

where ~k is the 3-momentum of the particle in the CM system, and σ1 and s1 are isospin

and spin of the particles σ1 = σ2 = σ and s1 = s2 = s.

The two-particle system in a given state of |Iν〉 and |`SJM〉 is given by

|aāν〉 =
∑
ν1 ν2
m1m2

(σ1ν1σ2ν2|Iν)(s1m1s2m2|Sms)(Sms`m|JM)

×
∫

d~k Y `
m(~k) |a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉

(30)

where Y `
m(~k) is the usual spherical harmonics. We note, from (17) through (20),

C|a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉 = (−)ν1+ν2|ā,+~k,−ν1,m1〉|a,−~k, −ν2,m2〉

= (−)ν1+ν2+2s|a,−~k, −ν2,m2〉|ā,+~k, −ν1,m1〉

G|a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉 = (−)2σ|ā,+~k, ν1,m1〉|a,−~k, ν2,m2〉

= (−)2σ+2s|a,−~k, ν2,m2〉|ā,+~k, ν1,m1〉

(31)

where the second lines have been derived by interchanging two wave functions, which

brings in a factor (−)2s, positive for mesons and negative for fermions.

The effect of C and G on the two-particle states can now be worked out. By inter-

changing the subscripts 1 and 2 and by the operation ~k → −~k, we obtain

C|aāν〉 = (−)`+S+ν |aā −ν〉

G|aāν〉 = (−)`+S+I |aāν〉

(32)

(33)

where we have used the relationship

Y `
m(−~k) = (−)` Y `

m(~k)
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and the following formulas for the Clebsch-Gordan coefficient

(σ2 − ν2σ1 − ν1|Iν) = (σ1ν1σ2ν2|Iν)

(σ2ν2σ1ν1|Iν) = (−)I−2σ (σ1ν1σ2ν2|Iν), σ1 = σ2 = σ

(s2m2s1m1|Sms) = (−)S−2s (s1m1s2m2|Sms), s1 = s2 = s

For completeness, we also work out the effect of the parity operation(Π) on the two-

particle states. Since antifermions have opposite intrinsic parities to those of their fermion

partners, the Π operation brings in the factor (−)2s. In addition, the 3-momentum ~k

changes sign under the Π operation. Therefore, we have

Π|a,+~k, ν1,m1〉|ā,−~k, ν2,m2〉 = (−)2s|a,−~k, ν1,m1〉|ā,+~k, ν2,m2〉 (34)

So, again by using the operation ~k → −~k, we obtain the familiar result

Π|aāν〉 = (−)`+2s |aāν〉 (35)

It follows from (32) that a particle-antiparticle with ν = 0 is in an eigenstate of C with

its eigenvalue (−)`+S. This result applies to all neutral NN̄ , qq̄, KK̄ and ππ systems,

with S = 0 for dikaon and dipion systems. For all ν, a particle-antiparticle system has

the G-parity equal to (−)`+S+I [see (33)]. Charged NN̄ , qq̄, KK̄ systems have I = 1, so

that their G-parity is (−)`+S+1 (again S = 0 for dikaons). Since the G-parity is +1 for

dipions, one has

I + ` = even

for any ππ system. For all ν, the intrinsic parity of a particle-antiparticle system is given

by (−)`+2s [see (35)].

We next apply the formulas (32) and (33) to KK̄ systems (see the next section for a

more complete treatment). We see that its G-parity is given by

g = (−)`+I

while its C-parity is simply given by (−)`. We see that I + ` = must be even if g = +1.

There are four outstanding examples: (1) the first example with I = ` = 0 is the f0(980),
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IG (JPC) = 0+ (0++), which is thought to be a KK̄ molecule; (2) the second example

with I = 0 and ` = 2 is the f ′2(1525) with IG (JPC) = 0+ (2++), which is known to decay

into KK̄ with a branching ratio of (88.7 ± 2.2)%; (3) the third example with I = ` = 1

is the ss̄ component of the ρ(1700), a KK̄ state in a P -wave. We should note that the

ρ(1700) also decays into KK̄∗(890) ⊕ K̄ K∗(890). See Section 6 for a thorough analysis

of the KK̄π ⊕ K̄Kπ; (4) finally, if g = −1, then

I + ` = odd

and the a2(1320) with IG (JPC) = 1− (2++) becomes an outstanding example; here I = 1

and ` = 2.

We now explore the consequences of the Bose-Fermi symmetry when two particles are

identical, i.e. a and ā are now identical particles, i.e. a = ā, σ1 = σ2 = σ and s1 = s2 = s.

We switch the two ket states as given in (30) and find, taking into account of the spin

statistics,

|āaν〉s = (−)2s
∑
ν1 ν2
m1m2

(σ1ν1σ2ν2|Iν)(s1m1s2m2|Sms)(Sms`m|JM)

×
∫

d~k Y `
m(~k) |ā,−~k, ν2,m2〉|a,+~k, ν1,m1〉 (36a)

= (−)2s
∑
ν1 ν2
m1m2

(σ1ν1σ2ν2|Iν)(s1m1s2m2|Sms)(Sms`m|JM)

(~k → −~k)→ × (−)`
∫

d~k Y `
m(~k) |ā,+~k, ν2,m2〉|a,−~k, ν1,m1〉

(1↔ 2)→ = (−)2s
∑
ν1 ν2
m1m2

(σ2ν2σ1ν1|Iν)(s2m2s1m1|Sms)(Sms`m|JM)

× (−)`
∫

d~k Y `
m(~k) |ā,+~k, ν1,m1〉|a,−~k, ν2,m2〉 (36b)

= (−)2s(−)σ1+σ2−I (−)s1+s2−S
∑
ν1 ν2
m1m2

(σ1ν1σ2ν2|Iν)(s1m1s2m2|Sms)

× (−)`(Sms`m|JM)

∫
d~k Y `

m(~k) |ā,+~k, ν1,m1〉|a,−~k, ν2,m2〉 (36c)

Noting that `, σ1 + σ2 = 2σ and s1 + s2 = 2s are integers, if we now require

(−)I+S+` = (−)2σ (37)
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then (30) and (36) become identical—which simply expresses the requirement that the

Bose-Fermi symmetry holds. We emphasize that (37) applies to both fermions and mesons.

It simply states that I + S + ` is even (odd) if σ is an integer (odd-half integer). As an

example, we apply (37) to a dipion system, and find that we must demand I + ` = even;

this result has already been obtained from a study of the G-parity of a dipion system, as

noted in the previous paragraph. As a second example, we apply (37) to a φφ system.

Here I = 0 and so we must require S + ` = even, i.e. ` = odd if S = 1 and ` = even if

S = 0 or 2. As another example, consider a ρ0ρ0 system. Here we must have I = 0 (or

2), so that S + ` = even; and hence the conclusions are the same as in the φφ system.

Consider next a dibaryon system, NN , where N = {p, n}, which must satisfy

I + S + ` = odd (for a dibaryon NN system) (38)

If I = 0, then S + ` = odd, whereas if I = 1, then we must require S + ` = even. As

a final example, consider a diquark system qq with q = {u, d} in a baryon. Since the

color index for the three quarks must be completely antisymmetric to form a color singlet

baryon, the diquark system must be symmetric under interchange of the two quarks in

spin-isospin space, i.e.

I + S + ` = even (for a diquark qq system in a baryon) (39)

which is obtained by adding a factor (−)2s to the equation (37). Or, equivalently, by

dropping the same factor from the equations (36a), (36b) and (36c). The ground-state

qq system must have ` = 0, so that I + S = even. This means that the qq states come

either in I = S = 0 with JP = 0+ leading to p and n, or they can come in I = S = 1

with JP = 1+, which leads not only to the N(1440) (I = 1
2

and JP = 1
2

+
) but also to the

∆(1232) (I = 3
2

and JP = 3
2

+
).

Consider now an ss̄ quarkonium and apply the formula (37). We see that σ = 1/2

and I = 0, so that we must have S + ` = odd where S = 0 or 1. If ` = 0 so that S = 1,

then we have the ss̄ component of the pseudo-vector nonet, i.e. the h′1(1170?). If ` = 1,

then S = 0 and so we obtain the ss̄ component of the vector nonet, i.e. the φ(1020).
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5 Two-Particle State: A KK̄ System

We now turn to the task of describing the KK̄ System. It should be noted, once again,

that the expression (37) holds only when a = ā; so it does not apply to |KK̄〉, since it is

not equal to |K̄K〉. We set

|I, KK̄ 〉 =
1√
2

(
|K+K−〉 − (−)I |K0 K̄0 〉

)
, I = 0 or 1 (40)

and

|I, K̄ K 〉 =
1√
2

(
|K̄0K0 〉 − (−)I |K−K+ 〉

)
, I = 0 or 1 (41)

Note that, from (22),

G |I, K K̄ 〉 =
1√
2

(
− |K̄0K0 〉+ (−)I |K−K+ 〉

)
= −|I, K̄ K 〉, I = 0 or 1

G |I, K̄ K 〉 =
1√
2

(
− |K̄+K− 〉+ (−)I |K0 K̄0 〉

)
= −|I, KK̄ 〉, I = 0 or 1

(42)

The combined wave function in an eigenstate of G-parity with an eigenvalue g is, applying

a proper normalization constant, b

|(0)Ψg
I 〉 =

1

2

(
|I, KK̄ 〉 − g |I, K̄ K 〉

)
(43)

or

|(0)Ψg
I 〉 =

1

2
√

2

(
|K+K−〉+ g(−)I |K−K+ 〉

)
− 1

2
√

2
(−)I

(
|K0 K̄0 〉+ g(−)I |K̄0K0 〉

) (44)

so that

G |(0)Ψg
I 〉 = g |(0)Ψg

I 〉, C |(0)Ψg
I 〉 = g(−)I |(0)Ψg

I 〉 (45)

This state is, from (32) and (33), in an eigenstate of G and C with its eigenvalue (−)`+I

and (−)`. So the C eigenvalue is independent of I.

b This is necessary so that the resulting wave function [see (46b)] confirms to the normalization given
in (40). The basic reason for this is that the equations (40) and (41) are equal to each other for a
properly defined g.
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We can further reduce the expression (44) by switching the K’s in the second terms

of the parentheses above and obtain

|(0)Ψg
I 〉 =

1

2
√

2

(
1 + g(−)`+I

)(
|K+ K−〉 − (−)I |K0 K̄0 〉

)
(46a)

=
1√
2

(
|K+K−〉 − (−)I |K0 K̄0 〉

)
, g = (−)`+I (46b)

(84)→ =
1√
2
|K+K−〉 − (−)I

2
√

2

(
|K1K1 〉 − |K2K2 〉

− |K1K2 〉+ |K2K1 〉
)

(46c)

(94)→ =
1√
2
|K+K−〉 − (−)I

2
√

2
· 1 + |ε|2

1− ε2
(
|KSKS 〉 − |KLKL 〉

− |KSKL 〉+ |KLKS 〉
)

(46d)

=
1√
2
|K+K−〉 − (−)I

2
√

2
· 1 + |ε|2

1− ε2

[(
|KSKS 〉 − |KLKL 〉

)
− 1√

2

(
1− (−)`

)
|KSKL 〉

]
(46e)

Note that (46b) above is identical to (40), confirming self-consistency in the normalization

chosen in (43). A comment is in order regarding the coefficient in front of the term

|KSKS 〉. Its magnitude is slightly bigger than 1/(2
√

2) and it is complex. Since the final

states |K+K−〉 and |KSKS 〉 cannot be simultaneously measured, the complex phase

of the coefficient cannot be measured in the strong-interaction reactions. The absolute

square of the coefficient merely indicates the relative strength of the final states |K+K−〉
and |KSKS 〉. The spin (or `) of the |KSKS 〉 (as well as the |KLKL 〉) must be even

because of the Bose symmetry and so its C-parity is equal to +1 and its G-parity is

determined by the isospin, i.e. g = (−)I . The decay mode a0
2(1320) → KSKS, with

a branching ratio c of [(4.9 ± 0.8)/8] %, provides a well-known example; note that the

quantum numbers IG (JPC) = 1− (2++) of the a2(1320) meson are consistent with this

decay mode. It is clear that an odd-` KK̄ systems must couple to |KSKL 〉 only with

its C-parity equal to −1 and its G-parity given by g = (−)I+1. The most prominent

decay of this type is φ(1020)→ KSKL which has a branching ratio of (34.2± 0.4)%. The

equation (46d) predicts that the φ(1020) branching ratio into K+K− is 50%, while its

branching ratio into KSKL is 25% (exactly, if ε = 0), d whereas the PDG (July 2010)

c The factor 1/8 comes from the equation (46d) for which we set ε = 0.
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cites the values of 48.9% and 34.2% for them. Evidently, higher-order loop diagrams in

the decay process contribute to an enhanced branching ratio into KSKL. A summary of

the neutral KK̄ systems is given in the following table:

Distinct Final States for Neutral KK̄ Systems a for J up to 6
[Eigenstates of C with its eigenvalue (−)` which is indendent of I]

Final State BR (Allowed IG ’s) (Allowed (JPC ’s)

K+K− 1/2 (0+, 1−) (0++), (2++), (4++), (6++)

(0−, 1+) (1−−), (3−−), (5−−)

KSKS
b 1/8 c (0+, 1−) (0++), (2++), (4++), (6++)

KLKL
d 1/8 (0+, 1−) (0++), (2++), (4++), (6++)

KSKL 1/4 (0−, 1+) (1−−), (3−−), (5−−)

a Based on (46) with ε = 0.
b Prime channel for detection, because cτ = 2.7 cm (see Appendix).
c The branching ratio for both KS ’s to decay via KS → π+π− is (1/8)×(0.692)2.
d Impractical to observe, because cτ = 1 534 cm (see Appendix).

A charged KK̄ system with its net strangeness zero is necessarily I=1, so that the

wave functions for Q = ±1 are

|(+)Ψg
1〉 =

1

2

(
|K+ K̄0〉 − g |K̄0K+〉

)
=

1

2

(
1− g(−)`

)
|K+ K̄0〉

|(−)Ψg
1〉 =

1

2

(
|K0K−〉 − g |K−K0〉

)
=

1

2

(
1− g(−)`

)
|K0K−〉

(47)

and so we find

G |(±)Ψg
1〉 = g |(±)Ψg

1〉, C |(±)Ψg
1〉 = g |(∓)Ψg

1〉, (48)

Therefore, a charged KK̄ system must have g = (−)`+1. Note the subtle difference of the

formulas above and (45) for Q = 0.

d Note that an extra factor of 1/
√

2 has been inserted in front of the KS KL final state in (46d), in
order to preserve the normalization. This can be traced to that fact that all the final states in the
eqation are orthogonal. It should be emphasized that both (46d) and (46e) are therefore consistent.
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6 Three-Particle State: A KK̄π System

As an example of the treatment required for three-particle states, we shall work out

the case of a neutral KK̄π system, which may be in an isospin state of either 0 or 1.

Independent of the I-spin, we will show that a wave function for the neutral KK̄π system

can be devised such that it is in an eigenstate of C with its eigenvalue ±1 for the state

(KK̄)0π0 but that it is in an eigenstate of G with its eigenvalue of ±1 for the state

(KK̄)±π∓. In addition, we will also work out in detail the wave functions which result in

the case of an intermediate state K∗(890) or K∗(1420). For brevity of notation, we forego

the use of ket states used in previous sections; whenever possible, we use the particle

names themselves to represent their wave functions.

Consider an arbitrary amplitude A for the state KK̄π and expand it in terms of the

orbital angular-momentum states for the KK̄ subsystem:

A =
∑
`

a
`
ψ
`
(KK̄) (49)

where the argument denotes ordering of particle momenta in the sense that K has +~k

and K̄ has −~k in the KK̄ CM system. Denote by B the amplitude resulting from A by

interchanging K and K̄. Then, we find

B =
∑
`

a
`
ψ
`
(K̄K)

=
∑
`

(−)`a
`
ψ
`
(KK̄) (50)

where the second line derives from the property of the spherical harmonics [see(28)]. We

can now construct two orthogonal wave functions:

Ψ+ =
1

2
(A+B) =

∑
`=even

a
`
ψ
`
(KK̄) (51)

Ψ− =
1

2
(A−B) =

∑
`=odd

a
`
ψ
`
(KK̄) (52)

A neutral KK̄π system comes in two varieties: (KK̄)0π0 and (KK̄)±π∓. From the

previous section, we know that a (KK̄)0 system has the C-parity (−)` and a π0 has the
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positive C-parity, so that

CΨ± = ±Ψ± for (KK̄)0π0 (53)

This shows that a neutral KK̄π state with a π0 has the C-parity +1 if its wave function is

even under K and K̄ interchange, and the C-parity is −1 if it is odd under the interchange.

A charged KK̄ system has necessarily I = 1. Therefore, the G-parity for (KK̄)± is (−)`+1.

But then π has an odd G- parity, so that

GΨ± = ±Ψ± for (KK̄)±π∓ (54)

In other words, a neutral KK̄π state with a charged π has the G-parity +1(−1) if the

wave function is even(odd) under the K and K̄ interchange.

Let us recapitulate the results so far for a neutral KK̄π system in a given eigenstate of

I, C and G. Regardless of the I-spin for the three-body system, its C-parity is even(odd)

if the KK̄ pair has even(odd) orbital angular momenta for the state (KK̄)0π0, whereas

its G-parity is even(odd) if the KK̄ pair has even(odd) angular momenta for the state

(KK̄)±π∓. It is worth emphasizing that, although π0 is also a G-eigenstate, the G-parity

for (KK̄)0π0 is not known until the I-spin for the three-body state is determined, since

a neutral KK̄ system can come with its isospin either 0 or 1. Note that these results

hold whatever sequential decay the KK̄π system may undergo. In particular, a Kπ

intermediate state can be either JPC = 1−− K∗(890) or JPC = 2++ K∗(1420). Therefore,

C or G eigenstates depend on the properties of K and K̄ interchange and not on the

intrinsic parities of the nonets to which Kπ or K̄π may belong.

We now turn to the problem of constructing a complete wave function for KK̄π

with an intermediate I = 1/2 K∗. We first start by writing down the K∗ states with

strangeness= ±1:
K∗+ =

√
2

3
π+K0 −

√
1

3
π0K+

K∗0 =

√
1

3
π0K0 −

√
2

3
π−K+


K̄∗0 =

√
2

3
π+K− −

√
1

3
π0K̄0

K∗− =

√
1

3
π0K− −

√
2

3
π−K̄0

(55)

A neutral K∗K̄ system in an isospin I can be written

AI =

√
1

2
[K∗+K− − (−)IK∗0K̄0] (56)
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where I=0 or 1. Combining (55) and (56), we obtain

AI =

√
1

3
[(π+K0)K− + (−)I(π−K+)K̄0]

−
√

1

6
[(π0K+)K− + (−)I(π0K0)K̄0] (57)

where parentheses are used to denote K∗ states and the ordering of particle names indi-

cates different momenta, e.g. ~p1, ~p2 and ~p3 in the three-body CM system. Let us denote

by BI the wave function which is obtained from AI by K and K̄ interchange.

We can then define

Φg =

√
1

2
[AI + gBI ] = Γg + Θg (58)

where g = ±1. Collecting π±’s into Γg and π0’s into Θg, one finds

Γg =

√
1

6

{[
(π+K0)K− + g(π+K−)K0

]
+ (−)I

[
(π−K+)K̄0 + g(π−K̄0)K+

]}
(59)

Θg = −
√

1

12

{[
(π0K+)K− + g (π0K−)K+

]
+ (−)I

[
(π0K0)K̄0 + g (π0K̄0)K0

]}
(60)

In order to gain insight to the above formula, it is helpful to define KK̄ amd K̄K states

in isospin σ,

Fσ =

√
1

2
[K+K− − (−)σK0K̄0] (61)

F̄σ =

√
1

2
[K̄0K0 − (−)σK−K+] (62)

These formulae show that neutral KK̄ states of (60) have isospins σ = 1 if I = 0 and

σ = 0 if I = 1. We conclude, therefore, under the G operation,

GΓg = g Γg (63)

GΘg = g (−)IΘg (64)

C Θg = gΘg (65)
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We find once more that a neutral KK̄π system with a charged π has a G-parity g, whereas

its G-parity is g(−)I if it has a π0. In other words, it is the C-parity which is independent

of I for the (KK̄)0π0 system. From (63) and (64), it is clear that g takes on a different

meaning depending on the functions; this is a consequence of the fact that one is exploring

the properties of a wave function symmetrized through interchange of K and K̄. One

may, instead, construct an eigenstate of G-parity alone, which leads to a wave function

different from (58). For a thorough analysis of this and other related topics, the reader is

referred to another note[1].

It is frequently the case in experiments that both (KK̄)+π− and (KK̄)−π+ are mea-

sured. Each event of course comes in either one or the other charge state, so that the

two charge states cannot interfere with each other. Assuming that the events are dom-

inated either by I = 0 states or by I = 1 states but not both[1], one may combine the

two data sets in two different ways. Since the three variables describing orientation of

the three-particle system can be defined equally for the two data sample, one needs to

investigate only the two Dalitz-plot variables. For the purpose,let us define the squares

of Kπ effective masses,

s1 = M2(π+K0), s2 = M2(π+K−) (66)

s3 = M2(π−K+), s4 = M2(π−K̄0)

Now we need to write down the general amplitude for the two data sample separately,

from (59),

φ+
g = (π+K0)K− + g(π+K−)K0 (67)

φ−g = (π−K+)K̄0 + g(π−K̄0)K+ (68)

where the superscripts designate π+ and π− charge states. We can assume, quite generally,

that both charge states produce the same admixture of G-parity eigenstates:

φ+ = aφ+
+ + bφ+

− (69)

φ− = aφ−+ + bφ−− (70)

where a and b are two arbitrary complex numbers.

In combining the two data, it is natural to respect the strangeness and equate the

Dalitz-plot variables as s1 = s3 and s2 = s4. An examination of (67) and (68) shows that
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this amounts to equating the amplitudes as follows:

D = (π+K0)K− = (π−K+)K̄0 (71)

E = (π+K−)K0 = (π−K̄0)K+

Submitting these into (69) and (70), one finds

φ+ = a(D + E) + b(D − E) (72)

φ− = a(D + E) + b(D − E) (73)

One has an option of combining Kπ variables according to their net charge i.e. neutral

or charged. In that case, one then sets s1 = s4 and s2 = s3. The amplitudes are now to

be combined in the following way:

D = (π+K0)K− = (π−K̄0)K+ (74)

E = (π+K−)K0 = (π−K+)K̄0

These lead to the overall amplitudes

φ+ = a(D + E) + b(D − E) (75)

φ− = a(D + E)− b(D − E) (76)

The difference between the two approaches is now apparent; it the minus sign in the

second term in (76) which is different from (73). Note that, when one combines two

charge samples, those with a π+ and with a π−, one is in fact combining the squares of

the amplitudes

|φ|2 = |φ+|2 + |φ−|2 (77)

This shows that, in the latter approach in which neutral and charged Kπ variables are

used, one is cancelling out the G-parity plus-and-minus interference terms (the terms

with a*b). On the other hand, in the former approach in which the Kπ variables are

grouped together according their strangeness, one is in fact reinforcing the interference

term. The reason for this difference can be traced to the fact that the strangeness is a

conserved quantum number in strong interactions. It should be emphasized that, in a

spin-parity analysis, presence of two G-parity states is detected most sensitively through

their interference term.
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We end this section by commenting on the branching ratios one expects with a K∗

intermediate state. For the purpose, it is best to go back to (57). We see that BR = 1/3

for both (π+K0)K− and (π−K+)K̄0 whereas BR = 1/6 for (π0K+)K− and (π0K0)K̄0. If

neutral K states are detected through KS → π+π−, one needs to augment the branching

ratios by an additional factor ≈ 1/3 for each K0 and/or K̄0 appearing in each KK̄π state.

Note that these branching ratios are independent of the total I-spin for the three-body

system.

For a more complete treatment of the KK̄π systems, the reader is referred to the

notes by the author[1], [2].

7 Four-Particle State: A KK̄ππ System

If the KK̄ system forms an isobar, then its G-parity is in fact equal to that of the four-

body system considered here, because the ππ system is already in a G-parity eigenstate

with the eigenvalue +1. The G-parity eigenstates of KK̄ systems has already been treated

in Section 5. We therefore only need to work out G-parity eigenstates of K∗ K̄∗+ c.c. We

may write, with σ1 = σ2 = 1/2,

Ag(Iν) =
1√
2

∑
ν1 ν2

(σ1ν1 σ2ν2|Iν)
[
(K∗ σ1ν1) (K̄∗ σ2ν2)− g (K̄∗ σ1ν1) (K∗ σ2ν2)

]
(78)

We see that, from (22),

G Ag(Iν) = gAg(Iν) (79)

For ease of reference, we work out explicitly for I = 0 or 1

Ag(I0) =
1

2

[
(K∗ σ1 +1/2) (K̄∗ σ2 −1/2)− (−)I(K∗ σ1 −1/2) (K̄∗ σ2 +1/2)

− g (K̄∗ σ1 +1/2) (K∗ σ2 −1/2) + g(−)I (K̄∗ σ1 −1/2) (K∗ σ2 +1/2)
]
(80)

and for I = 1,

Ag(1±1) =
1√
2

[
(K∗ σ1 ±1/2) (K̄∗ σ2 ±1/2)− g (K̄∗ σ1 ±1/2) (K∗ σ2 ±1/2)

]
(81)
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In a reaction with diffractive dissociation of a negative-pion beam (the Pomeron exchange

reaction), the produced system preserves the flavor of a negative pion; so it must have

I = 1, Q = −1 and g = −1. It is helpful to write down the formula (81) again but with

K∗’s given in (55)

Ag(1 + 1) =
1√
2

[
K∗+ K̄∗0 − g K̄∗0 K∗+

]
=

1√
2

[(√
2

3
π+K0 −

√
1

3
π0K+

) (√
2

3
π+K− −

√
1

3
π0K̄0

)

− g

(√
2

3
π+K− −

√
1

3
π0K̄0

)(√
2

3
π+K0 −

√
1

3
π0K+

)]
Ag(1 − 1) =

1√
2

[
K∗0 K∗− − g K∗− K∗0

]
=

1√
2

[(√
1

3
π0K0 −

√
2

3
π−K+

)(√
1

3
π0K− −

√
2

3
π−K̄0

)

− g

(√
1

3
π0K− −

√
2

3
π−K̄0

)(√
1

3
π0K0 −

√
2

3
π−K+

)]

(82)

Collecting the terms with π± (i.e. dropping those with π0’s), we obtain, after renormal-

izing, 
Lg(1 + 1) =

1√
2

[
(π+K0)(π+K−)− g (π+K−)(π+K0)

]
Lg(1 − 1) =

1√
2

[
(π−K+)(π−K̄0)− g (π−K̄0)(π−K+)

] (83)

where the parentheses indicate the particles which form K∗’s. The equation (83) shows

that the wave function with Q = ±1 appears completely symmetrized for g = −1; this

would be the case if the (KK̄ππ)± systems were produced via diffractive dissociation from

π± beams.
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Appendix

We start with K1 and K2 defined in (23)
|K1〉 =

1√
2

[
|K0〉+ |K̄0〉

]
|K2〉 =

1√
2

[
|K0〉 − |K̄0〉

]

|K0〉 =

1√
2

[
|K1〉+ |K2〉

]
|K̄0〉 =

1√
2

[
|K1〉 − |K2〉

] (84)

We note that, from (22),

|K̄0〉 = CP |K0〉 and |K0〉 = CP |K̄0〉 (85)

and so

CP |K1〉 = +|K1〉 and CP |K2〉 = −|K2〉 (86)

The neutral K0 and K̄0 can be recast into KS and KL, expressed in terms of the CP -

violating complex parameters εS and εL, with εS = ε+ δ and εL = ε− δ,
|KS〉 =

1√
1 + |εS|2

[
|K1〉+ εS |K2〉

]
|KL〉 =

1√
1 + |εL|2

[
|K2〉+ εL |K1〉

] (87)

The parameters εS and εL are small (see below), and so the KS and KL are approximately

equal to K1 and K2, which are CP -even and CP -odd eigenstates, respectively.

The KS and KL are mass eigenstates, whose masses are nearly equal, with or without

the CPT invariance:

m(KL)−m(KS) ' (3.483± 0.006)× 10−12 MeV, (assuming CPT ) (88)

The mass difference is nearly the same with CPT but its error is nearly twice that quoted

above. The two neutral K mesons are distinguished by their mean life times and their

major decay modes, i.e.

cτ(KS) = 2.6842 cm (assuming CPT ), cτ(KL) = 15.34 m (89)
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andKS → (ππ)0

KL → (3π)0

BR ' 99.89%

BR ' 32.06%

 KL → (π e)0νe

KL → (π µ)0νµ

BR ' 40.55%

BR ' 27.04%
(90)

Now if we substitute (84) into (87), we obtain e
|KS〉 =

1√
2(1 + |εS|2)

[
(1 + εS) |K0〉+ (1− εS) |K̄0〉

]
|KL〉 =

1√
2(1 + |εL|2)

[
(1 + εL) |K0〉 − (1− εL) |K̄0〉

] (91)

and its inverse is
|K0〉 =

1√
2 (1− εSεL)

[
(1− εL)

√
1 + |εS|2 |KS〉+ (1− εS)

√
1 + |εL|2 |K̄L〉

]
|K̄0〉 =

1√
2 (1− εSεL)

[
(1 + εL)

√
1 + |εS|2 |KS〉 − (1 + εS)

√
1 + |εL|2 |K̄L〉

] (92)

According to the PDG Book (July 2010), we have

εS = ε+ δ and εL = ε− δ

|ε| = (2.228± 0.011)× 10−3 (PDG, page 38)

<(ε) = (1.612± 0.006)× 10−3 (PDG, page 760)

=(ε) = (1.539± 0.010)× 10−3 (derived from the two numbers above)

<(δ) = (0.25± 0.23)× 10−3 (PDG, page 760)

=(δ) = (−0.006± 0.019)× 10−3 (PDG, page 760)

(93)

In the limit of the CPT invariance, we must have δ = 0, so that εS = εL. In this limit we

observe that (92) simplifies to
|K0〉 =

√
1 + |ε|2√

2 (1 + ε)

[
|KS〉+ |K̄L〉

]
|K̄0〉 =

√
1 + |ε|2√

2 (1− ε)

[
|KS〉 − |K̄L〉

] (94)

e There is a sign error in the PDG (July 2010), page 759. The second term of KL must have a minus
sign (not a plus sign). The same error is present in the previous PDG (July 2008), page 722.
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