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1 Introduction

This note is an extended version of a paper[1] on the ambiguous solutions of the ππ systems
by the author, adapted to the central production of ππ and ππππ for X0 in

a+ b → 1 + 3(X0) + 2; a → 1 + c(P ); b → 2 + d(P ) (1)

via double-Pomeron exchange at COMPASS and ALICE, see Fig. 1:

c(P ) + d(P ) → 3(X0) → (ππ)0 or (ππππ)0 (2)

a

b

c

d

1

2

3

Figure 1: Production of a system 3 from the reaction a + b → 1 + 3 + 2.
Here c and d stand for the exchanged Reggeons (or Pomerons).

For COMPASS, we take the x-z plane to be that formed by the vertex c-d-3(X0), so

that the production normal (the y-axis) is along ~c × ~d in the X0 rest frame. We choose
the z-axis to be along the Reggeon (Pomeron) c(P ) such that |tc| ≤ |td|. So Pomerons are
distinguished by their |t|; so they are not identical particles. The system X0 must have the
quantum numbers, in the limit of double-Pomeron exchange,

IG(JPC) = 0+(0++), 0+(2++), 0+(4++), 0+(6++), · · · for (ππ)0

= 0+(0±+), 0+(1±+), 0+(2±+), 0+(3±+), 0+(4±+) · · · for (ππππ)0
(3)

For an even-pion system, the G-parity is always positive, and I + ℓ = even where ℓ is the
spin of the (ππ)0 system. If the production proceeds via a double-Pomeron exchange, then
an isovector cannot be produced. The isovector states are possible if one of the exchanged
Reggeon is the ρ(770). We note here that, for a Pomeron-Reggeon exchange, the exchanged
Reggeon cannot be an ω(782), since we deal with a system with G = +1.
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For ALICE, we take the x-z plane to be that formed by ~a and ~b. Then the y-axis is
proportional to ~a ×~b, again in the X0RF (rest frame). The system X0 must have, in the
limit of double-Pomeron exchange,

IG(JPC) = 0+(0++), 0+(2++), 0+(4++), 0+(6++), · · · for (ππ)0

= 0+(0±+), 0+(1±+), 0+(2±+), 0+(3±+), 0+(4±+) · · · for (ππππ)0
(4)

because of the Bose symmetry for two JPC = 2++ Pomerons (S + j = even where S =
0, 1, 2, 3, 4)[2] and because of the fact that I + j = even for a ππ system. Note that the
produced dipion system is always an isoscalar with even G-parity, i.e. C is always positive.

This note is intended for beginning graduate students; as such it contains much more de-
tailed intermediate steps in a number of derivations worked out, clearly more than customary
and/or appropriate for publication in physics journals.

For interested readers, we have collected all the references cited in this note,
as well as this note itself in

http://cern.ch/suchung/

a public website at CERN.

For a comprehensive review, we would suggest two recent books, “Pomeron Physics and
QCD,” by S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann[3] and “High-Energy
Particle Diffraction,” by V. Barone and E. Predazzi[4].

2 Reflection Operators

We shall examine the eigenstates of the reflection operator, with η and p standing for the
intrinsic parity and four-momentum p of X0, with the requirement that ~p lies in the x-z
plane,

|p, ǫjm〉 = θ(m)
{

|p, jm〉+ η ǫ(−)j−m|p, j −m〉
}

(5)

where

θ(m) =
1√
2
, m > 0

=
1

2
, m = 0

= 0, m < 0

(6)

One sees that τ(m) = 4θ2(m), see (48). We explore the actions of the reflection operator

Πy = ΠRy(π) = Ry(π) Π (7)

for the reaction (1) and (2), where Ry(π) represents the rotation by π around the y-axis for
a reaction which takes place in the x-z plane. We use the relationaship

〈j m′|Ry(π)|j m〉 = djm′ m(π) = (−)j−m δm′ −m (8)
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and work out the transformation of a rest-frame ket state under Πy

Πy |j m〉 = η Ry(π)|j m〉 = η
∑

m′

|j m′ 〉〈j m′ |Ry(π)|j m〉

= η
∑

m′

|j m′ 〉 djm′ m(π) = η (−)j−m |j −m〉
(9)

and find, since η2 = +1,
Π2

y |j m〉 = (−)2j |j m〉 (10)

a well-known formula for a state undergoing a roation of 2π. A relativitistic ket state,
including that in the helicity basis, transforms according to

Πy|p, jm〉 = η(−)j−m |p, j −m〉 (11)

provided that ~p lies in the x-z plane, so that the the Lorentz transformation needed to go from
a rest state to a relativitistic ket state with four-momentum p commutes with the reflection
operator Πy, since the y-axis is normal to the direction of the Lorentz transformation. So
we find

Πy |p, ǫjm〉 = ǫ(−)2j |p, ǫjm〉 (12a)

Π2
y |p, ǫjm〉 = ǫ2(−)4j |p, ǫjm〉 = ǫ2 |p, ǫjm〉(12b) (12b)

≡ (−)2j |p, ǫjm〉 (12c)

The formula (12c) comes from the requirement that the states |p, ǫjm〉 statisfy (10). a So
we see that ǫ2 = (−)2j , or equivalently ǫ2(−)2j = +1. We note that (−)4j = +1, since 4j
an even integer always. It follows that ǫ = ±1 for bosons and ǫ = ±i for fermions. Note, in
addition, that ǫǫ∗ = +1 in general, and so ǫ = ǫ∗(−)2j . Note that (ǫ∗)2 = (−)−2j . We shall
later use the bra form of (5)

〈p, ǫjm| = θ(m)
{

〈p, jm|+ η ǫ∗ (−)j−m〈p, j −m|
}

(13)

We now write down the particles of two- to three-body reaction for which all the parti-
cles are given in helicity-basis vectors except for the system X0 which will be given in the
reflectivity basis shown in (5). The transition amplitude can be written

ǫVj m k = 〈q1, j1λ1; q3, ǫj m; q2, j2λ2|M|qa, jaλa; qb, jbλb〉 (14a)

(13) → = θ(m)
{

Vj mk + η ǫ∗ (−)j−m Vj−mk

}

(14b)

where M is the operator representing the transition amplitude of reaction (1) and qi stands
for a four-momentum in the overall center-of-mass frame for COMPASS and the laboratory
frame for ALICE. Here the index k stand for all the helicities appearing on the right-hand

a This can derived most expeditiously by applying Π2
y separately to the first term of (5) first and the

second term next. It is clear, from the method outlined here, that the two terms revert back to
their original forms and that the result cannot depend on ǫ, except that there is merely a common
additional factor (−)2j as in (10).
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side of (14a), i.e. the helcities for particles a, b, 1 and 2. Assuming factorization holds for
the reaction (1), we can write

ǫVj m k =
∑

jcλc; jdλd

〈q3, ǫj m|M3|qc, jcλc; qd, jdλd〉

∗ 〈q1, j1λ1; qc, jcλc|Ma|qa, jaλa〉 ∗ 〈q2, j2λ2; qd, jdλd|Mb|qb, jbλb〉
(15)

where the subscripts a, b and 3 of M indicate the appropriate transition operators for the
initial states a, b and the time-reversed reaction X0 → cd. We first go into the rest frame of
X0 (or, equivalently, the 3RF, see Fig. 1). We use the symbols ~q for the 3-momenta and E
for the energy in the X0RF. We see that, since ~q3 = 0,

~qa + ~qb = ~q1 + ~q2 ≡ ~qe , Ea + Eb = E1 + E2 +m3 ≡ Ee
~qa = ~q1 + ~qc , ~qb = ~q2 + ~qd , ~qc + ~qd = 0

(16)

Consider now two planes of interest for a stusy of central productions. From (16), we see
that, by multiplying the first of the second equation above by (×~q1) from the right and by
multiplying the second of the second equation above by (×~q2) from the right,

~qa × ~q1 = ~qc × ~q1 ~qb × ~q2 = ~qd × ~q2 (17)

This shows that ~qc lies in the plane (a|1c) contains, while ~qd lies in another plane (b|2d).
But, in the X0RF, the vectors ~qc and ~qd are equal and opposite from each other. This shows
that the two planes (a|1c) and (b|2d) intersect along the lines +~qc and −~qd with the 3(X0)
situated in the middle as shown in Fig. 2; the line is in fact along the lines defining the two
four-momentum transfers tc and td in the problem[10].

a

1

c
3

d

2

b

Figure 2: Production of a system 3 via c + d → 3 in the 3 rest frame,
where c and d stand for the Reggeons (or Pomerons).

The relevant four-momentum transfers are

tc = Ec2 − q2c td = Ec2 − q2c
= (Ea − E1)2 − (~qa − ~q1)

2 = (Eb − E2)2 − (~qb − ~q2)
2

= m2
a +m2

1 − 2(Ea E1 − ~qa · ~q1) = m2
b +m2

2 − 2(Eb E2 − ~qb · ~q2)
(18)

We set the z-axis to be along ~qc in the X0RF and put the plane (a|1c) to be on the x-z
plane, i.e.

x̂a = (1, 0, 0) ŷa = (0, 1, 0) ẑa = (0, 0, 1) (19)
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Then the plane (b|2d) is obtained by rotating the (a|1c) plane by Φ, the angle between the
planes (a|1c) and (b|2d). Then the rotated coordinate system is given by

x̂b = (sinΦ, cos Φ, 0, 0) ŷb = (cosΦ,− sin Φ, 0) ẑb = (0, 0, 1) (20)

So, by definition, the normal to the plane (a|1c) is along ŷa, while the normal to the plane
(b|2d) is ŷb.

The density matrix is, from (15),

ǫ ǫ′ρjj
′

mm′ =
∑

k

ǫ Vjmk
ǫ′ V ∗

j′m′k

=
∑

λ1λ2;λa λb
jcλc jdλd;j

′
cλ

′
c j′

d
λ′
d

〈q3, ǫj m|MX |qc, jcλc; qd, jdλd〉〈q3, ǫ′j ′ m′|MX |qc, j′cλ′
c; qd, j

′
dλ

′
d〉∗

× 〈q1, j1λ1; qc, jcλc|Ma|qa, jaλa〉〈q1, j1λ1; qc, j
′
cλ

′
c|Ma|qa, jaλa〉∗

× 〈q2, j2λ2; qd, jdλd|Mb|qb, jbλb〉〈q2, j2λ2; qd, j
′
dλ

′
d|Mb|qb, jbλb〉∗

(21)

The process (cd|X0) shown on the first line above is colinear for X0 → c + d, aligned
along the z-axis. So the reflection operator for this process can be defined with any y-axis
as long as it is confined to the x-z plane. We shall use the reflection operator Πy for this
process and apply Π†

y Πy = I to the two vertices on the first line above. b We obtain a
factor ǫ(ǫ′)∗ and the helicities of the particles c and d change sign. We define separately the
reflection operators Πa

y and Πb
y for (b|2d), for the planes (a|1c) and (b|2d) by respectively.

We apply (Πa
y)

†Πa
y = I to the second line above and (Πb

y)
†Πb

y = I to the third line above and
work out the necessary transformations of the states involved. The net results is that no
multiplicative factors are needed, as the particles a, b, 1 and 2, and c, c′, d and d′ occur twice
in the equations above, but that all the helicities involved change sign. Since the helicities
are summed over, the sign changes are immaterial for (21).

As a consequence, the density matrix must satisfy

ǫ ǫ′ρjj
′

mm′ = ǫ(ǫ′)∗ × ǫ ǫ′ρjj
′

mm′
(22)

so we must have ǫ(ǫ′)∗ = +1. Or we obtain, by multiplying by ǫ′ from the right, a simple and
elegant result ǫ = ǫ′. This shows that the density matrix breaks up into block-diagonal forms
with ǫ = +1(+i) and ǫ = −1(−i); there are no interference terms between ǫ = +1(+i) and
ǫ = −1(−i). Finally, we need to emphasize that the reflection operators are always defined
with the y-axis normal to the reaction plane; so the 3-momenta remain the same through
the operations, i.e. they remain invariant. We add, in addition, that there are in fact only
two reflection operators in the problem, i.e. Πa

y and Πb
y. The third reflection operator Πy,

introduced initially for the process c + d → X0, can be replaced by either Πa
y or Πb

y, as the

b The identity operator is inserted next to MX and the Π†
y is propagated left and Πy propagated right;

the reflection operators commute with MX and the Lorentz boost implied by the nonzero 3-momenta
present in the problem, so that the reflection operators act directly on the rest-frame ket states. Note
that the Lorentz boost is confined to the x-z plane; it is for this reason we conclude that the reflection
operators must commute with the Lorentz boosts.
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reaction takes place along the z-axis, which is the line of intersection between the planes
(a1|c) and (b2|d). So ~c is along +ẑ and ~d is along −ẑ, or vice versa, with the X0 remaining
at the origin of the the coordinate system for the X0RF.

We are now ready to derive an important formula for the density matrix.
For the purpose, we start with (14b)

ǫρjj
′

mm′ =
∑

k

ǫ Vjmk
ǫ V ∗

j′m′k

= θ(m)θ(m′)
∑

k

{

Vj m k + η ǫ∗ (−)j−m Vj−mk

}

×
{

V ∗
j′ m′ k + η′ ǫ (−)j

′−m′

V ∗
j′ −m′ k

}

(23)

and evaluate, for non-negative values of m and m′,

ǫρ j j′

−m−m′ =
∑

k

ǫ Vj−mk
ǫ V ∗

j′ −m′k

= θ(m)θ(m′)
∑

k

{

Vj−mk + η ǫ∗ (−)j+m Vj mk

}

×
{

V ∗
j′ −m′ k + η′ ǫ (−)j

′+m′

V ∗
j′ m′ k

}

(24)

Note that
ηǫ∗(−)j−m × ηǫ∗(−)j+m = (ǫ∗)2(−)2j = +1

η′ǫ(−)j
′−m′ × η′ǫ(−)j

′+m′

= (ǫ)2(−)2j
′

= +1
(25)

so that
ǫρ j j′

−m−m′ =
∑

k

ǫ Vj−mk
ǫ V ∗

j′ −m′k

= η ǫ∗ (−)j+mη′ ǫ (−)j
′+m′

θ(m)θ(m′)

×
∑

k

{

ηǫ∗(−)j−m Vj−mk + Vj mk

}

×
{

η′ǫ(−)j
′−m′

V ∗
j′ −m′ k + V ∗

j′ m′ k

}

(26)

In conclusion, we must have, for non-negative values of m and m′,

ǫρ j j′

−m−m′ = ηη′(−)j−j′(−)m−m′ ǫρ j j′

mm′
(27)

a remarkable result.

Similarly, we can show that the same formula holds for the original density matrix. The
spin density matrix [see (23)] can be written

ρjj
′

mm′ =
∑

k

Vjmk V
∗
j′m′k

=
∑

λ1λ2;λa λb
jcλc jdλd;j

′
cλ

′
c j′

d
λ′
d

〈q3, j m|MX |qc, jcλc; qd, jdλd〉〈q3, j ′ m′|MX |qc, j′cλ′
c; qd, j

′
dλ

′
d〉∗

× 〈q1, j1λ1; qc, jcλc|Ma|qa, jaλa〉〈q1, j1λ1; qc, j
′
cλ

′
c|Ma|qa, jaλa〉∗

× 〈q2, j2λ2; qd, jdλd|Mb|qb, jbλb〉〈q2, j2λ2; qd, j
′
dλ

′
d|Mb|qb, jbλb〉∗

(28)
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and apply the product of appropriate reflection operators for MX , Ma and Mb to find

ρjj
′

mm′ = ηη′(−)j−j′(−)m−m′
∑

λ1λ2;λa λb
jcλc jdλd;j

′
cλ

′
c j′

d
λ′
d

〈q3, j −m|MX |qc, jc −λc; qd, jd −λd〉

× 〈q3, j ′ −m′|MX |qc, j′c −λ′
c; qd, j

′
d −λ′

d〉∗
× 〈q1, j1 −λ1; qc, jc −λc|Ma|qa, ja −λa〉〈q1, j1 −λ1; qc, j

′
c −λ′

c|Ma|qa, ja −λa〉∗

× 〈q2, j2 −λ2; qd, jd −λd|Mb|qb, jb −λb〉〈q2, j2 −λ2; qd, j
′
dλ

′
d|Mb|qb, jb −λb〉∗

(29)

The helicities are summed over internally, so that we conclude

ρ j j′

−m−m′ = ηη′(−)j−j′(−)m−m′

ρ j j′

mm′
(30)

which is the same as (27).

We shall derive another useful formula involving density matrices. From (23), we find

ǫρjj
′

mm′ = θ(m)θ(m′)
∑

k

{

Vj mk + η ǫ∗ (−)j−m Vj−mk

}

×
{

V ∗
j′ m′ k + η′ ǫ (−)j

′−m′

V ∗
j′ −m′ k

}

= θ(m)θ(m′)
{

ρ j j′

mm′ + η ǫ∗ (−)j−m ρ j j′

−mm′

+ η′ ǫ (−)j
′−m′

ρ j j′

m−m′ + ηη′(−)j−j′(−)m−m′

ρ j j′

−m−m′

}

(30) → = 2θ(m)θ(m′)
{

ρ j j′

mm′ + η′ ǫ (−)j
′−m′

ρ j j′

m−m′

}

(31a)

(30) → = 2θ(m)θ(m′)
{

ρ j j′

mm′ + η ǫ∗ (−)j−m ρ j j′

−mm′

}

(31b)

3 Naturality of the Exchanged Particles

We note that, from (5) and if η = (−)j ,

|ǫj 0〉 = |j 0〉, if ǫ = +1 (32a)

= 0, if ǫ = −1 (32b)

For a negative reflectivity ǫ, the m = 0 states are not allowed, see (32b). The reflectivity
quantum number ǫ has been defined so that it coincides with the naturality of the exchanged
particles in Reaction (1). One can prove this by noting that the meson production vertex
is in reality a time-reversed process X0 → c+ d in which a state of arbitrary spin-parity jη

decays into a Reggeon (or the Pomeron) and another Reggeon (or the Pomeron)

jη → Reggeon (or Pomeron) + Reggeon (or Pomeron) (33)

The helicity-coupling amplitude F j for this decay[6] is

Aj
p(m) ∝ F j

λ Dj ∗
mλ(φp, θp, 0) (34)
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where λ is the difference in the helicity of the exchanged particles, so that λ = λc − λd.
The subscript p stands for the ‘production’ variables. m is the z-component of spin j in the
rest frame. Our choice of the production coordinate system is that the particles c and d are
aligned along the z-axis, i.e. θp = φp = 0. So we have, since the DJ-function is zero unless
m = λ,

Aj
p(λ) ∝ F j

λ (35)

This shows that the production amplitude is simply given by the helicity-coupling amplitude
itself.

From the parity conservation in the decay, one finds, introducing the naturalities

ν = η(−)j and ν̄ = η(−)−j (36)

we obtain
F j
λ = νj ν̄cν̄d F

j
−λ (37)

The helicity-coupling amplitude F j
λ is zero, if νj ν̄cν̄d = −1 and λ is zero. We now compare

the formula (37) above with (32a) and (32b); we see that the reflectivity quantum number ǫ
is in fact the product of three naturalities

ǫ = νj ν̄cν̄d (38)

so that
F j
λ = ǫ F j

−λ (39)

and that F j
0 = 0 if ǫ = −1. F j

0 is nonzero in general if ǫ = −1. This is consistent with (32).

4 Angular Distributions for ππ Systems

The distribution function as a function of Ω = (θ, φ) has a standard expression in terms of
the density matrix

I(Ω) =
∑

jm

j′m′

ρj j
′

mm′ D
j ∗
m 0(φ, θ, 0) D

j′

m′ 0(φ, θ, 0) (40)

The angular distribution (40) may be expanded in terms of the moments H(LM) via

I(Ω) =
∑

LM

(

2L+ 1

4π

)

H(LM)DL ∗
M0 (φ, θ, 0) (41)

with

H(LM) =

∫

dΩ I(Ω)DL
M0(φ, θ, 0)

(41) → =
∑

L′M ′

(

2L′ + 1

4π

)

H(L′M ′)

∫

dΩDL′ ∗
M ′0 (φ, θ, 0)D

L
M0(φ, θ, 0)

(40) → =
∑

jm

j′m′

ρj j
′

mm′

∫

dΩDj′

m′ 0(φ, θ, 0)D
L
M0(φ, θ, 0)D

j∗
m 0(φ, θ, 0)

(42)

8



where we have used (103). Thus we obtain an important result c

H(LM) =
∑

jm

j′m′

(

4π

2j + 1

)

ρj j
′

mm′(j
′m′ LM |jm)(j′0L0|j0) (43)

The normalization integral is

H(00) =

∫

dΩ I(Ω) (44)

We use the hermiticity of ρ in (43) and (101) to find

H∗(LM) =
∑

jm

j′m′

(

4π

2j + 1

)

(

ρj j
′

mm′

)∗

(j′m′ LM |jm)(j′0L0|j0)

ρ = ρ† and (101c) → = (−)M
∑

jm

j′m′

(

4π

2j′ + 1

)

ρj
′ j
m′ m (jmL −M |j′m′)(j0L0|j′0)

[

{jm} ↔ {j′m′}
]

→ = (−)M
∑

jm

j′m′

(

4π

2j + 1

)

ρj j
′

mm′ (j
′m′ L −M |jm)(j′0L0|j0)

= (−)M H(L −M)

(45)

We now work out, starting from (43) again,

(−)M H(L −M) =
∑

jm
j′m′

(

4π

j + 1

)

ρjj
′

mm′ (−)M(j′m′L −M |jm)(j′0L0|j0)

=
∑

j m
j′ m′

(

4π

j + 1

)

ρjj
′

−m−m′(−)M (j′ −m′L −M |j −m)(j′0L0|j0)

(M = m′ −m) → =
∑

j m
j′ m′

(

4π

j + 1

)

ρjj
′

−m−m′ (−)m−m′

× (j′ −m′L −M |j −m)(j′0L0|j0)

(j′ + L− j = even) → =
∑

j m
j′ m′

(

4π

j + 1

)

ρjj
′

−m−m′ (−)m−m′

(j′m′LM |j m)(j′0L0|j0)

=
∑

j m
j′ m′

(

4π

j + 1

)

ηη′(−)j−j′ρjj
′

mm′ (j
′ m′LM |j m)(j′0L0|j0)

= H(LM)

(46)

where we have used the fact that η(−)j = η′(−)j
′

= +1 for ππ systems. So, together with
(45), we conclude that H(LM) must be real. The angular distribution can now be recast

c Our notation for the Clebsch-Gordan coefficients is as follows:
(j1m1 j2m2|j2m3) is equal to 〈j1j2 m1m2|j1j2j3m3〉 in the PDG Book.
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into

I(Ω) =
∑

LM

(

2L+ 1

4π

)

H(LM)DL ∗
M0 (φ, θ, 0)

(M > 0) → =
∑

LM

(

2L+ 1

4π

)

τ(M)dLM0(θ) H(LM) exp iMφ

(47)

where
τ(M) = 2, M > 0,

= 1, M = 0,

= 0, M < 0

(48)

Note that all the terms of (47) are now real. Since the D-functions form a complete orthonor-
mal set in the space Ω = (θ, φ), one merely needs to specify a set of the H ’s to uniquely
define an angular distribution.

5 Angular Distributions for ππππ Systems

Angular Distributions for 4π Systems are much more complicated, because the phase space
spanned by a four-body is complex; it is in fact 8-dimensional. The decay amplitudes can
be classified according to the decay modes: A31 = 3(X0) → (3-body) + π, (3-body) →
(2-body) + π; or A22 = 3(X0) → (2-body) + (2-body).

We write down the amplitudes in full, denoting the 3-body amplitude by |s λs〉 and the
following 2-body amplitude by |ℓ λ〉,

|jm〉 → |s λs〉+ |π〉, |s λs〉 → |ℓ λ〉+ |π〉, |ℓ λ〉 → |2π〉 (49)

or

Aj s ℓ
31 (m) = F j

λs
Dj ∗

mλs
(φ3, θ3, 0)F

s
λ D

s∗
λs λ(φ2, θ2, 0)F

ℓ
0 D

ℓ∗
λ 0(φ1, θ1, 0) (50)

From parity conservation, we have

F j
λs

= νj νs η0 F
j
−λs

, νj = ηj(−)j νs = ηs(−)s and η0 = −1

F s
λ = νs νℓ η0 F

s
−λ and νℓ = (−)ℓ

(51)

where η0 = −1 is the negative parity of the bachelor pions in the problem. We note that the
sequential decays considered here necessrily require rotations of the coordinate sytems, i.e.
the secondary decay is described with the z-axis, ẑh, along the break-up momentum in the
appropriate rest frame, with the y-axis along ẑ × ẑh, where ẑ is the z-axis in the parent rest
frame.

The alternative decay mode is

|jm〉 → |ℓ1 λ1〉+ |ℓ2 λ2〉, |ℓ1 λ1〉 → |2π〉 |ℓ2 λ2〉 → |2π〉 (52)

so that

Aj ℓ1 ℓ2
λ1 λ2

(m) = F j ℓ1 ℓ2
λ1 λ2

Dj ∗
mλ(φ4, θ4, 0) ∗ F ℓ1

0 Dℓ1 ∗
λ1 0

(φ5, θ5, 0) ∗ F ℓ2
0 Dℓ2 ∗

λ2 0
(φ6, θ6, 0) (53)

10



where λ = λ1 − λ2. Again, from parity conservation, we must have

F j ℓ1 ℓ2
λ1 λ2

= νj ν1 ν2 F
j ℓ1 ℓ2
−λ1 −λ2

, ν1 = (−)ℓ1 , ν2 = (−)ℓ2 (54)

Once again, the coordinate systems follow the same pattern; the z-axis, x̂h, of the daughter
frames are fixed along the break-up momenta, with their y-axes given by ẑ × ẑh, where ẑ is
the z-axis in the parent rest frame.

The reader will have noted that sequential decays described here entail different rest
frames, obtained from the original coordinate system by pure time-like Lorentz tranaforma-
tions whioch rotations. Thius is perfectly fine, the final particles are spinless pions. But this
technique cannot be applied if the final states have nonzero spins, e.g. pp̄+ ππ, because the
final helicity states cannot be correctly described if they are given different rest frames. We
point out that the correct procedure is to use the canonical formalism[6], which ensures that
all the final-state helicities are evaluated in the same rest frame.

6 ALICE Setup

For the foreseeable future, the Roman pots are not planned for ALICE detector. We work
out, therefore, the case in which the recoil particles 1 and 2 are not measured, and so we
will need to integrate over their degrees of freedom, to arrive at the formulas appropriate for
ALICE.

For the purpose, we start with the transition amplitude as defined in (15) with the
particle 3 given in the reflectivity basis. Again assuming factorization holds for the reaction
(1), we can rewrite (15)

ǫVj mk =
∑

jcλc; jdλd

〈p3, ǫj m|M3|pc, jcλc; pd, jdλd〉3
∗ 〈p1, j1λ1; pc, jcλc|Ma|pa, jaλa〉a+b (55)

∗ 〈p2, j2λ2; pd, jdλd|Mb|pb, jbλb〉a+b

where the subscripts a+b and 3 indicate the Lorentz-invariant amplitudes have be evaluated
in two different rest frames, i.e. the first one in the 3RF, while the second and the third
ones in a+ b rest frame, i.e. the laboratory frame of the ALICE detector. We have used the
generic momenta p to emphasize that we are going into two different rest frames.

Referring to Fig. 1, we obtain, in the standard 4-momentum notation,

pa + pb = p1 + p3 + p2 (56a)

pc = pa − p1 (56b)

pd = pb − p2 (56c)

p3 = pc + pd (56d)

11



and


















s = (pa + pb)
2 = (p1 + p2 + p3)

2

s13 = (p1 + p3)
2 and s23 = (p2 + p3)

2

tc = p2c = (pa − p1)
2 and td = p2d = (pb − p2)

2

m2
3 = (pc + pd)

2

(57)

Here c and d are space-like, i.e. tc = p2c ≤ 0 and td = p2d ≤ 0. We assume that the ’masses’√
s, ma, mb, m1, m3 and m2 are all fixed and different in general for the problem under

consideration.

Let κ1, κ3 and κ2 be the two-dimensional vectors in a plane perpendicular to pa (defined
to be the positive z direction) and/or pb in the overall CM system. And let q be the one-
dimensional momentum along pa in the overall CM system, and so −q is then directed along
the negative pa or, equivalently, along pb, again in the overall CM system. So, by definition,
we have

κi = |κi|, pi = |pi| =
√

κ2
i + q2i and εi =

√

p2i +m2
i

(58)

where i = (a, b, 1, 3, 2) for the particles in a 2- to 3-body process, see Fig. 1. Note that
pi now stands for both the 4-momentum and the magnitude of the 3-momentum, while εi
stands for the energy of the particle i in the overall CM system. We define

pi = (εi;κi, qi), κi ≪ qi where i = (a, b, 1, 2) (59)

where the x and y axes span the the plane perpendicular to pa and/or pb and the z axis lies
along pa. We can further define the ‘transverse mass’ wi as follows

d

wa = ma, wb = mb, wi =
√

m2
i + κ2

i , i = 1, 2, 3 (60a)

εa =
√

p2 +m2
a ≃ p+

m2
a

2p
, ma ≪ p (60b)

εb =
√

p2 +m2
b ≃ p+

m2
b

2p
, mb ≪ p (60c)

εi =
√

κ2
i + q2i +m2

i =
√

w2
i + q2i , i = 1, 2, 3 (60d)

(wi ≪ qi) → ≃ qi +
w2

i

2qi
, i = 1, 2 only (60e)

In particular, we do not assume that w3 ≪ q3. We rewrite all of the momenta once again
here, setting p to be the magnitude of the momentum pa or pb in the overall CM system,

pa = (εa;~0, p) and pb = (εb;~0,−p)

p1 = (ε1;κ1, q1)

p2 = (ε2;κ2,−q2)

p3 = (ε3;κ3, q3)

(61)

d For COMPASS on pp interactions at 190 GeV/c, we have
√
s ≃ 18.9 GeV and p ≃ 9.40 GeV. The

difference εa − p = εb − p is less than 0.05 GeV. Note that q1 ≃ q2 . 9.40 GeV.

12



where we have set pa and p1 are parallel in the limit κ1 = 0, while pb and p2 are also parallel,
again in the limit κ2 = 0; note that the z components of the latter are both negative, and

κ1 + κ2 + κ3 = 0 and q2 = q1 + q3 (62)

Specifically, we require that, for some fixed value q0,

q0 > 0, q1 > 0 and q2 > 0

q0 ≪ q1, q0 ≪ q2 and q1 ≃ q2

−q0 < q3 < q0

(63)

Here q0 is clearly arbitrary. e

We see that
√
s = ε1 + ε3 + ε2

≃ q1 + ε3 + q2 = 2q1 + ε3 + q3 ≃ 2q2 + ε3 + q3 & 2q1 ≃ 2q2

assuming that ε3 ≪ q1 and ε3 ≪ q2

(64)

while √
s = εa + εb ≃ 2p, ma ≪ p and mb ≪ p (65)

There is a hierarchy of momenta

|q3| ≤ q0 ≪ q1 ≃ q2 . p ≃ 1

2

√
s (66)

We are now ready to calculate, for s → ∞ and q1 → ∞ and q2 → ∞ (but q3 = q2 − q1
must remain finite.)

{

tc = (pa − p1)
2 = (εa − ε1)

2 − (p− q1)
2 − κ2

1 ≃ −κ2
1

td = (pb − p2)
2 = (εb − ε2)

2 − (p− q2)
2 − κ2

2 ≃ −κ2
2

(67)

and, with mi ≈ κi ≪ qi, (i = 1, 2),

s13 = (p1 + p3)
2 = m2

1 +m2
3 + 2(ε1ε3 − q1q3 − κ1κ3) (68a)

≃ 2q1(ε3 − q3) + (m2
1 +m2

3 − 2κ1κ3) (68b)

s23 = (p2 + p3)
2 = m2

2 +m2
3 + 2(ε2ε3 + q2q3 − κ2κ3) (68c)

≃ 2q2(ε3 + q3) + (m2
2 +m2

3 − 2κ2κ3) (68d)

where we have used the approximations ε1 ≃ q1 and ε2 ≃ q2 to arrive at (68b) and (68d).
Taking the product of the sub-energies in (68b) and (68d), we see that

s13s23 ≃ 4q1q2w
2
3 + 2q1(ε3 − q3)(m

2
2 +m2

3 − 2κ2κ3)

+ 2q2(ε3 + q3)(m
2
1 +m2

3 − 2κ1κ3)

+ (m2
1 +m2

3 − 2κ1κ3)(m
2
2 +m2

3 − 2κ2κ3) (69a)

s13s23 ≃ 4q1q2w
2
3 + 2q1(ε3 − q3)(m

2
2 +m2

3 − 2κ2κ3)

+ 2q2(ε3 + q3)(m
2
1 +m2

3 − 2κ1κ3) (69b)

e For COMPASS on pp interactions at 190 GeV/c, we may set q0 = 1.5 GeV, approximately 16% of
p ≃ 9.40 GeV.
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Observe that the first term is dominant; it is a product of q1 and q2 and is independent of
q3. In order to derive (69b), we have assumed that, from (68b) and (68d),

m2
1 +m2

3 − 2κ1κ3 ≪ 2q1(ε3 − q3)

m2
2 +m2

3 − 2κ2κ3 ≪ 2q2(ε3 + q3)
(70)

Assuming that these conditions are satisfied, we are able to drop, from (69a), the term devoid
of q1 or q2 to obtain (69b). We can rewrite the conditions (70) with the conditions spelled
out in (64)

ε3 ≪ q2 → 2q1(ε3 − q3) ≪ 2q1(q2 − q3)

ε3 ≪ q1 → 2q2(ε3 + q3) ≪ 2q2(q1 + q3)
(71)

Combining (70) and (71), we obtain

m2
1 +m2

3 − 2κ1κ3 ≪ 2q1(ε3 − q3) ≪ 2q1(q2 − q3)

m2
2 +m2

3 − 2κ2κ3 ≪ 2q2(ε3 + q3) ≪ 2q2(q1 + q3)
(72)

which show that ε3 and |q3| cannot be too large or small.

Retaining only the first term in (69) and using (66), we obtain finally,

Regge Domain: s13s23 ≃ sw2
3 = s(m2

3 + κ2
3) (73)

a well-known relationship. f For a given
√
s and a fixed w3, we see that

√
s13 and

√
s23 are

dependent on each other by a parabola. This is a crucial formula for central production; it
can be used to define the central production; no other cuts are needed, not even the t cuts.
Kaidalov[11] defines the Regge domain through the relationship (73). We recapitulate the
conditions under which the formulas (67), (69) and (73) are valid:

(1) m1 ≈ κ1 ≈ w1 ≪ p ≈ q1 ≃ 1
2

√
s

and −tc ≃ κ2
1 ≈ m2

1 remains finite

(2) m2 ≈ κ2 ≈ w2 ≪ p ≈ q2 ≈ q1 ≃ 1
2

√
s

and −td ≃ κ2
2 ≈ m2

2 remains finite

(3) m3 ≈ κ3 . w3 and ε23 = w2
3 + q23 where −q0 < q3 < q0;

(a) q2 = q1+ q3; (b) q0 ≪ q1 ≃ q2 . p ≃ 1
2

√
s; (c) ε3 ≪ q1 ≃ q2;

(d) m2
1 +m2

3 − 2κ1κ3 ≪ 2q1(ε3 − q3) ≪ 2q1(q2 − q3);
(e) m2

2 +m2
3 − 2κ2κ3 ≪ 2q2(ε3 + q3) ≪ 2q2(q1 + q3)

f For COMPASS on pp interactions at 190 GeV/c, we have
√
s ≃ 18.9 GeV and w3 < 2.1 GeV. So in

the case in which the sub-energies are approximately equal, we find
√
s13 ≃ √

s23 . 6.30 GeV.
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It is the third condition, with the subsidiary conditions (b), (c), (d) and (e), which are
necessary for the equation (73) to be valid. We have thus defined the precise conditions for
the ‘central production of a resonance.’

We further develop the longitudianl components q1, q2, q3 of the particles 1, 2 and 3 in
the overall CM system. From (60e), (62) and (64), we see that

√
s = ε1 + ε2 + ε3 ≃ q1 +

w2
1

2q1
+ q2 +

w2
2

2q2
+ ε3 (74a)

(q2 = q1 + q3) → ≃ 2q1 +
w2

1

2q1
+

w2
2

2(q1 + q3)
+ ε3 + q3 (74b)

≃ 2q1 +
w2

1

2q1
+

w2
2

2q1

(

1− q3
q1

)

+ ε3 + q3

(drop the term with q3/q1) → ≃ 2q1 +
w2

1 + w2
2

2q1
+ ε3 + q3 (74c)

So we obtain a quadratic equation in q1

4q21 − 2(
√
s− ε3 − q3)q1 + (w2

1 + w2
2) ≃ 0 (75)

so that

4q1 ≃ (
√
s− ε3 − q3)±

[

(
√
s− ε3 − q3)

2 − 4(w2
1 + w2

2)
]1/2

(76)

The discriminant cannot be negative

√
s− ε3 − q3 ≥ 2(w2

1 + w2
2)

1/2 (77)

The maximum transverse mass for w3 is thus given by, for q3 = 0,

w3

∣

∣

max
=

√
s− 2(w2

1 + w2
2)

1/2 (78)

Likewise, the effective mass for particle 3 is given by, with q3 = 0 and κ3 = 0,

nmπ ≤ m3 ≤ m3

∣

∣

max
= w3

∣

∣

max
=

√
s− 2(w2

1 + w2
2)

1/2 (79)

where n = even (greater than zero), i.e. 2, 4, 6, · · · .

Now rewrite (76) as

4q1 ≃ (
√
s− ε3 − q3)

{

1±
[

1− 4(w2
1 + w2

2)

(
√
s− ε3 − q3)2

]1/2
}

(80)

If
√
s ≫ ε3+ q3 and

√
s ≫ (w2

1 +w2
2)

1/2, typical experimental conditions for COMPASS and
ALICE, we have

q1 ≃
1

2
(
√
s− ε3 − q3)

{

1− w2
1 + w2

2

(
√
s− ε3 − q3)2

}

(Solution 1) (81a)

≃ w2
1 + w2

2

2(
√
s− ε3 − q3)

(Solution 2) (81b)
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which shows that q1 can be given as a function of (ε3+q3). Note that there exist two positive
solutions for q1 as seen by (81) for a given ε3 and q3. But, if

√
s ≫ ε3 + q3, then only the

first solution (81a) is acceptable, because the second solution for q1 is likely to be very small,
violating the condition that q1 ≫ ε3 and q1 ≫ |q3|, see (63). Correspondingly, there is one
positive solution for q2 as well, through q2 = q1 + q3,

q2 ≃
1

2
(
√
s− ε3 − q3)

{

1− w2
1 + w2

2

(
√
s− ε3 − q3)2

}

+ q3 (82a)

≃ 1

2
(
√
s− ε3 + q3)

{

1− w2
1 + w2

2

s− 2
√
s ε3 − w2

3

}

(82b)

It is instructive to add (81a) and (82a)

q1 + q2 ≃
√
s− ε3 − q3 −

w2
1 + w2

2

(
√
s− ε3 − q3)

+ q3 (83)

or

q1 + q2 + ε3 +
w2

1 + w2
2

(
√
s− ε3 − q3)

≃
√
s (84)

But this should be consistent with (74c), i.e.

w2
1 + w2

2

2q1
≃ w2

1 + w2
2

(
√
s− ε3 − q3)

(85)

which is clearly correct, because
√
s ≃ q1 + q2 + ε3 = 2q1 + ε3 + q3. In summary, we have

self-consistent solutions for q1 in (81a) and q2 in (82b).

We recapitulate the results here for ease of reference. For a given set of ε3 and q3, the q1
and q2 can be expressed as

q1 ≃
1

2
(
√
s− ε3 − q3)

{

1− w2
1 + w2

2

(
√
s− ε3 − q3)2

}

(86)

and

q2 ≃
1

2
(
√
s− ε3 + q3)

{

1− w2
1 + w2

2

s− 2
√
s ε3 − w2

3

}

(87)

The allowed range of q1, 2 is

0 ≤ q1, 2 ≤ q1, 2

∣

∣

∣

max
=

1

2
(
√
s−m3)

{

1− w2
1 + w2

2

(
√
s−m3)2

}

(88)

for a given m3 with κ3 = 0 and q3 = 0. The maximum value of m3 is given by (78) with
κ3 = 0 and q3 = 0

m3

∣

∣

∣

max
=

√
s− 2(w2

1 + w2
2)

1/2 (89)
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The transverse momentum κ3 is known, because ~p3 is known. However, the κ1 and κ2

remain unmeasured, although their sum is known through

κ1 + κ2 + κ3 = 0 (90)

The four-momentum transfers −tc and −td are given by κ2
1 = |κ1|2 and κ2

2 = |κ2|2, which
remain unmeasured at ALICE, an important information missing for a study of the central
production process.

We come finally to the issue which have NOT been addressed so far in this note. At
ALICE, the ‘transverse mass’ w1 and w2 are unmeasured, since they depend on the transverse
momenta κ1 and κ2

w2
1 = m2

1 + κ2
1 and w2

2 = m2
2 + κ2

2 (91)

In the overall CM system for ALICE, there are two measured planes; the plane 1 is formed by
the beam axis (The z-axis) and κ3 (or equivalently ~p3) and the plane formed by (90). Note
that, by definition, the latter plane is confined to a two-dimensional plane perpendicular to
the z-axis, .i.e. in the x-y plane. This is the coordinmate system for the ALICE detector; we
shall designate the y-axis to be along the vertical and the x-axis to be along the horizontal
plane or, euivalently, the detector plane. Let α3 (0 −→ 2π) be the angle formed by κ3 in
the x-y plane, measured from the x-axis. Then, the x and y components of κ3 are given by

κ3x = κ3 cosα3 and κ3y = κ3 sinα3 (92)

We now impose a crucial assumption that κ1 and κ2 which lie in the x-z plane through (90)
have the same magnitude, i.e.

κ1 = κ2 ≡ f κ3 , 0 < f < fmax (93)

where fmax could be of the order of 1 but otherwise undetermined. We assume that κ1 ×κ2

point along the positive z-axis. So we must have

κ2
1 = −tc = −td = κ2

2 (94)

Let the angles α1 and α2 describe those of κ1 and κ2, so that α2 > α1 by definition. We
know that, since

α ≡ π + α3 − α1 = α2 − π − α3

and so

κ3 = κ1 cos(α) + κ2 cos(α) = 2κ cosα = 2f κ3 cosα or 2f cosα = 1 (95)

which shows that α = 60◦ if f = 1. We thus find that

α1 = α3 + π − cos−1

(

1

2f

)

and α2 = α3 + π + cos−1

(

1

2f

)

(96)

and so
κ1x = κ1 cosα1 and κ1y = κ1 sinα1 (97)

and
κ2x = κ2 cosα2 and κ2y = κ2 sinα2 (98)

We have thus fully specified κ1 and κ2 as a function of κ3 and f . The parameter f is
unknown, but it is possible that the data could point to an optimum value of f in a scenario
in which a range of f ’s had been tried.
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7 Regge Phenomenology

We take formulas from

‘High-Energy Particle Diffraction,’ by V. Barone and E. Predazzi

Their formulas (5.88) through (5.93) read for a Regge trajectory α(t),

σtot ∼ a sα(0)−1 where α(t) = α(0) + α′ t (99a)

dσel

dt
∼ s2(α(0)−1) e−b|t| where b = b0 + 2α′ ln s (99b)

We have assumed here that both the elastic cross sections and the total cross sections through
the optical theorem are dominated by a single Reggeon exchange. See a plot of Regge
trajectories in Fig. 3.
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αρ(t) = 0.48 + 0.88 t

α
P
(t) = 1.086 + 0.25 t

J = Re{α(m2)}

Mass2 (GeV2) →

J 
→

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0

f2(1270)

π

ρ

a2(1320)

ρ3(1670)

b1(1235)

f1(1285)

π2(1670)

Pomeron

Figure 3: Regge trajectories, including that of the Pomeron

We take
αP (t) = 1.086 + 0.25 t

αρ(t) = 0.488 + 0.88 t
(100)

The ratio of the cross sections with the Reggeon set to the ρ(770) divided by that to the
Pomeron is as shown in the following table:
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R = σtot[ρ(770)]/σtot(Pomeron)

Experiment pbeam(GeV/c)
√
s (GeV) R

√
s13 = s23 (GeV) a

BNL E852[1] 8 2.4 0.588 2.2

WA102[7] 450 4.5 0.402 3.0

COMPASS[8] 190 5.5 0.356 3.3

ALICE[9] 3 500× 3 500 7 000 0.005 118

a We use the formula for the Regge domain, i.e.√
s13 s23 =

√
sw3, see (73), with s13 = s23 and w3 = 2.0 GeV.

This shows that R = 35.6% at COMPASS but that it reduces to R = 0.5% at ALICE; so we
can safely ignore any Reggeon exchanges other than that of the Pomeron at LHC energies.
We have assumed here that the ratio of the double-Pomeron exchanges can be estimated by
that of the total cross sections due to the Pomeron exchanges in 2-body-to-2-body reactions.
The formula for the Regge domain, shown on the last column above, indicates that the sub-
energies,

√
s13 =

√
s23 (GeV) might not be high enough for a reliable central production,

even at COMPASS energies. However, the sub-energies for ALICE are at 118 GeV, sufficient
for a clean ‘double-Pomeron’ exchange process leading to the final state with mass at ∼ 2.0
GeV.
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Appendix A

Clebsch-Gordan Coefficents and D-functions

A few useful Clebsch-Gordan coefficents are:

(j1 m1 j2m2|j3m3) = (−)j1+j2−j3 (j1 −m1 j2 −m2|j3 −m3) (101a)

= (−)j1+j2−j3 (j2 m2 j1m1|j3m3) (101b)

= (−)j1+m2−j3

√

2j3 + 1

2j1 + 1
(j3m3 j2 −m2|j1 m1) (101c)

The normalization integrals for the D-functions are,
with R = (α, β, γ) and dR = dα dcosβ dγ,

∫

dRDj1
µ1m1

(R)Dj2
µ2m2

(R)Dj3 ∗
µ3m3

(R) =
8π2

2j3 + 1
(j1µ1j2µ2|j3µ3)(j1m1j2m2|j3m3) (102)

and, with Ω = (θ, φ) and dΩ = dφ dcosθ,
∫

dΩDj1
µ1m1

(φ, θ, 0)Dj2
µ2m2

(φ, θ, 0)Dj3∗
µ3m3

(φ, θ, 0)

=
4π

2j3 + 1
(j1µ1j2µ2|j3µ3)(j1m1j2m2|j3m3)

(103)

provided m3 = m1 +m2.

Appendix B

We re-examine the reflectivity formula for the reaction (1) from parity conservation. We do
this in the canonical formalism[6], in which the spin components of all the paticles involved
are given with respect to the quantization axis, but this is not essential; the helcity formalism
is just as well suited for the purpose.

We start with the (12a) written in the conjugate form

〈p, ǫjm|Π†
y = ǫ∗(−)−2j 〈p, ǫjm| (104)

and apply to the product of three amplitudes of (15), expressed in terms of the reflectivity
eignestates (12a) and (104) in the coordinate system introduced previously

ǫVj mk =
∑

jcmc; jdmd

〈q3, ǫj m|MX |qc, ǫcjcmc; qd, ǫdjdmd〉

∗ 〈q1, ǫ1j1m1; qc, ǫjjcmc|Ma|qa, ǫajama〉
∗ 〈q2, ǫ2j2m2; qd, ǫdjdmd|Mb|qb, ǫbjbmb〉

(105)
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and insert the three appropriate products of reflection operators

ǫVj mk =
∑

ǫcjcmc; ǫdjdmd

〈q3, ǫj m|(Πy)
†Πy MX |qc, ǫcjcmc; qd, ǫdjdmd〉

∗ 〈q1, ǫ1j1m1; qc, ǫjjcmc|(Πa
y)

†Πa
y Ma|qa, ǫajama〉

∗ 〈q2, ǫ2j2m2; qd, ǫdjdmd|(Πb
y)

†Πb
y Mb|qb, ǫbjbmb〉

=
∑

ǫcjcmc; ǫdjdmd

ǫ∗(−)−2jǫc(−)2jcǫd(−)2jd〈q3, ǫj m|MX |qc, ǫcjcmc; qd, ǫdjdmd〉

∗ ǫ∗1(−)−2j1 ǫ∗c(−)−2jc ǫa(−)2ja

∗ 〈q1, ǫ1j1m1; qc, ǫcjcmc|Ma|qa, ǫajama〉
∗ ǫ∗2(−)−2j2 ǫ∗d(−)−2jd ǫb(−)2jb

∗ 〈q2, ǫ2j2m2; qd, ǫdjdmd|Mb|qb, ǫbjbmb〉
= ǫ∗(−)−2jǫ∗1(−)−2j1ǫ∗2(−)−2j2ǫa(−)2jaǫb(−)2jb

×
∑

ǫcjcmc; ǫdjdmd

〈q3, ǫj m|MX |qc, ǫcjcmc; qd, ǫdjdmd〉

∗ 〈q1, ǫ1j1m1; qc, ǫcjcmc|Ma|qa, ǫajama〉
∗ 〈q2, ǫ2j2m2; qd, ǫdjdmd|Mb|qb, ǫbjbmb〉

= ǫ∗(−)−2jǫ∗1(−)−2j1ǫ∗2(−)−2j2ǫa(−)2jaǫb(−)2jb ǫVj mk

(106)

So we obtain
ǫ∗(−)−2jǫ∗1(−)−2j1ǫ∗2(−)−2j2ǫa(−)2jaǫb(−)2jb = +1

ǫa(−)2jaǫb(−)2jb = ǫ(−)2jǫ1(−)2j1ǫ2(−)2j2
(107)

so that the product of reflectivities is conserved in the reaction a+ b → 1+3(X0)+ 2. From
this we see that

ǫ(−)2j = ǫ∗1ǫ
∗
2ǫaǫb(−)2(ja+jb−j1−j2) (108)

This shows that the reflectivity ǫ for 3(X0) is related to the reflectivites of particles a, b, 1
and 2.
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