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1 Introduction

Consider a reaction in which a system 3 is produced centrally, i.e.

a+ b → 1 + 3 + 2 (1)

For COMPASS, a and 1 are pions, while b and 2 are protons. At the LHC, the initial particles

a and b, as well as the final particles 1 and 2, are all protons. The derivation given in this

note is general; it applies both to COMPASS and to ALICE at the LHC. Clearly, it applies

equally well to other experiments at the LHC, but for a study of the light-quark hadrons

with mass less than 3.0 GeV, ALICE is a suitable detector for the spectroscopy, provided

the Roman pots were available in the future.

The reader may consult references[1], [2] and [3], for the background material for treating

central productions, or more generally the formalism concerning 2- to 3-body reactions.

The produced central system is designated by 3 and its mass by m3, as shown in Fig. 1:

Referring to Fig. 1, we obtain, in the standard 4-momentum notation,

a

b

c

d

1

2

3

Figure 1: Production of a system 3 from the reaction a+ b → 1 + 3 + 2.

Here c and d stand for the exchanged Reggeons (or Pomerons).
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pg ≡ pa + pb = p1 + p3 + p2 (2a)

pc = pa − p1 (2b)

pd = pb − p2 (2c)

p3 = pc + pd (2d)

and






























s = (pa + pb)
2 = (p1 + p2 + p3)

2

s13 = (p1 + p3)
2 and s23 = (p2 + p3)

2

tc = p2c = (pa − p1)
2 and td = p2d = (pb − p2)

2

w2 = m2
3 = (pc + pd)

2

(3)

Here c and d are space-like, i.e. tc = p2c ≤ 0 and td = p2d ≤ 0. We assume that the ’masses’
√
s, ma, mb, m1, m3 = w and m2 are all fixed and different in general for the problem under

consideration.

Let κ1, κ3 and κ2 be the two-dimensional vectors in a plane perpendicular to pa (defined

to be the positive z direction) and/or pb in the overall CM system. And let q be the one-

dimensional momentum along pa in the overall CM system, and so −q is then directed along

the negative pa or, equivalently, along pb, again in the overall CM system. So, by definition,

we have

κi = |κi|, pi = |pi| =
√

κ2
i + q2i and εi =

√

p2i +m2
i

(4)

where i = (a, b, 1, 3, 2) for the particles in a 2- to 3-body process, see Fig. 1. Note that

pi now stands for both the 4-momentum and the magnitude of the 3-momentum, while εi

stands for the energy of the particle i in the overall CM system. We define

pi = (εi;κi, qi), κi ≪ qi where i = (a, b, 1, 2) (5)

where the x and y axes span the the plane perpendicular to pa and/or pb and the z axis lies

along pa. We can further define a the ‘transverse mass’ wi, setting p to be the magnitude of

a For COMPASS on pp interactions at 190 GeV/c, we have
√
s ≃ 18.9 GeV and p ≃ 9.40 GeV. The

difference εa − p = εb − p is less than 0.05 GeV. At COMPASS, we have, very roughly, q1 ∼ 8.0, q2 ∼ 9.0
and q3 ∼ 1.0 GeV, respectively, such that q2 ∼ q1 + g3.
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the momentum pa or pb in the overall CM system, as follows:

wa = ma, wb = mb, wi =
√

m2
i + κ2

i , i = 1, 2, 3

εa =
√

p2 +m2
a ≃ p+

m2
a

2p
, ma ≪ p

εb =
√

p2 +m2
b ≃ p+

m2
b

2p
, mb ≪ p

εi =
√

κ2
i + q2i +m2

i =
√

w2
i + q2i , i = 1, 2, 3

(wi ≪ qi) → ≃ qi +
w2

i

2qi
, i = 1, 2 only

(6)

In particular, we do not assume that w3 ≪ q3. We rewrite all of the momenta once again

here,

pa = (εa;~0, p) and pb = (εb;~0,−p)

p1 = (ε1;κ1, q1)

p2 = (ε2;κ2,−q2)

p3 = (ε3;κ3, q3)

(7)

where we have set pa and p1 to be parallel in the limit κ1 = 0, while pb and p2 are also

parallel, again in the limit κ2 = 0; note that the z components of the latter are both negative,

and

κ1 + κ2 + κ3 = 0 and q2 = q1 + q3 (8)

Specifically, we require that, for some fixed value q0,

q0 > 0, q1 > 0 and q2 > 0

q0 ≪ q1, q0 ≪ q2 and q1 ≃ q2

−q0 < q3 < q0 and so |q3| ≪ q1 or q2

(9)

Here q0 is clearly arbitrary. b

We see that

√
s = ε1 + ε3 + ε2

≃ q1 + ε3 + q2 = 2q1 + ε3 + q3 ≃ 2q2 + ε3 + q3 & 2q1 ≃ 2q2
(10)

b For COMPASS on pp interactions at 190 GeV/c, we may set q0 = 1.5 GeV, approximately 16% of p ≃ 9.40
GeV.
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assuming that ε3 ≪ q1 and ε3 ≪ q2, while

√
s = εa + εb ≃ 2p, ma ≪ p and mb ≪ p (11)

There is a hierarchy of momenta

|q3| ≤ q0 ≪ q1 ≃ q2 . p ≃ 1

2

√
s (12)

We are now ready to calculate, for s → ∞, p → ∞, q1 → ∞ and q2 → ∞ (but q3 = q2−q1

must remain finite.)







tc = (pa − p1)
2 = (εa − ε1)

2 − (p− q1)
2 − κ2

1 ≃ −κ2
1

td = (pb − p2)
2 = (εb − ε2)

2 − (p− q2)
2 − κ2

2 ≃ −κ2
2

(13)

and, with mi ≈ κi ≪ qi, (i = 1, 2),

s13 = (p1 + p3)
2 = m2

1 +m2
3 + 2(ε1ε3 − q1q3 − κ1 · κ2) (14a)

≃ 2q1(ε3 − q3) +m2
1 +m2

3 − 2κ1 · κ2 (14b)

s23 = (p2 + p3)
2 = m2

2 +m2
3 + 2(ε2ε3 + q2q3 − κ2 · κ3) (14c)

≃ 2q2(ε3 + q3) +m2
2 +m2

3 − 2κ2 · κ3 (14d)

where we have used the approximations ε1 ≃ q1 and ε2 ≃ q2 to arrive at (14b) and (14d).

Taking the product of the sub-energies in (14a) and (14b), we see that

s13s23 ≃ 4q1q2w
2
3 + 2q1(ε3 − q3)(m

2
2 +m2

3 − 2κ2 · κ3)

+ 2q2(ε3 + q3)(m
2
1 +m2

3 − 2κ1 · κ2)

+ (m2
1 +m2

3 − 2κ1 · κ2)(m
2
2 +m2

3 − 2κ2 · κ3) (15a)

s13s23 ≃ 4q1q2w
2
3 + 2q1(ε3 − q3)(m

2
2 +m2

3 − 2κ2 · κ3)

+ 2q2(ε3 + q3)(m
2
1 +m2

3 − 2κ1 · κ2) (15b)

Observe that the first term is dominant; it is a product of q1 and q2 and is independent of

q3. In order to derive (15b), we have assumed that, from (14b) and (14d),

m2
1 +m2

3 − 2κ1 · κ2 ≪ 2q1(ε3 − q3)

m2
2 +m2

3 − 2κ2 · κ3 ≪ 2q2(ε3 + q3)
(16)
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Assuming that these conditions are satisfied, we are able to drop, from (15a), the term devoid

of q1 or q2 to obtain (15b). c We can rewrite the conditions (16) with the conditions spelled

out in (10)

ε3 ≪ q2 → 2q1(ε3 − q3) ≪ 2q1(q2 − q3)

ε3 ≪ q1 → 2q2(ε3 + q3) ≪ 2q2(q1 + q3)
(17)

Combining (16) and (17), we obtain

m2
1 +m2

3 − 2κ1 · κ2 ≪ 2q1(ε3 − q3) ≪ 2q1(q2 − q3)

m2
2 +m2

3 − 2κ2 · κ3 ≪ 2q2(ε3 + q3) ≪ 2q2(q1 + q3)
(18)

which show that ε3 and |q3| cannot be too large or small.

Retaining only the first term in (15) and using (12), we obtain finally,

Regge Domain: s13s23 ≃ sw2
3 = s(m2

3 + κ2
3) (19)

a well-known relationship. d For a given
√
s and a fixed w3, we see that

√
s13 and

√
s23 are

dependent on each other by a parabola. This is a crucial formula for central production; it

can be used to define the central production; no other cuts are needed, not even the t cuts.

Kaidalov[3] defines the Regge domain through the relationship (19). We recapitulate the

conditions under which the formulas (13), (15) and (19) are valid:

(1) m1 ≈ κ1 ≈ w1 ≪ p ≈ q1 ≃ 1
2

√
s

and −tc ≃ κ2
1 ≈ m2

1 remains finite

(2) m2 ≈ κ2 ≈ w2 ≪ p ≈ q2 ≈ q1 ≃ 1
2

√
s

and −td ≃ κ2
2 ≈ m2

2 remains finite

(3) m3 ≈ κ3 ≈ w3 and ε23 = w2
3 + q23 where −q0 < q3 < q0;

(a) q2 = q1+ q3; (b) q0 ≪ q1 ≃ q2 . p ≃ 1
2

√
s; (c) ε3 ≪ q1 ≃ q2;

(d) m2
1 +m2

3 − 2κ1 · κ2 ≪ 2q1(ε3 − q3) ≪ 2q1(q2 − q3);

c For a sample selected for central production on pp interactions at 190 GeV/c at COMPASS, this formula
is satisfied at about 3% level.

d For COMPASS on pp interactions at 190 GeV/c, we have
√
s ≃ 18.9 GeV and w3 < 2.1 GeV. The sample

selected for central production satisfies this formula at ∼ 6 % level.
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(e) m2
2 +m2

3 − 2κ2 · κ3 ≪ 2q2(ε3 + q3) ≪ 2q2(q1 + q3)

It is the third condition, with the subsidiary conditions (b), (c), (d) and (e), which are

necessary for the equation (19) to be valid. We have thus defined the precise conditions for

the ‘central production of a resonance.’

2 Kinematics for Central Production

We now go into the rest frame of 3 (3RF), see Fig. 2. We first note that, denoting the

3-momenta by boldface in this frame, the equation (2a) becomes

Ea + Eb = E1 +m3 + E2 (20a)

pa + pb = p1 + p2 (20b)

pc = pa − p1 (20c)

pd = pb − p2 (20d)

Ec + Ed = m3 (20e)

pc + pd = 0 (20f)

since p3 = 0.

a

1

c
3

d

2

b

Figure 2: Production of a system 3 via c+ d → 3 in the 3 rest frame,

where c and d stand for the Reggeons (or Pomerons).

We set up two planes (1c|a) and (2d|b) in the 3RF by specifying their normals, i.e.

n1a = pa × p1 and n2b = pb × p2 (21)
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We shall fix the plane (1c|a) by specifying pc to be along the positive z axis and n1a to

be along the y axis, i.e. the plane (1c|a) lies in the (xz) plane. The vector p1 can now be

specified by the polar angles Ω1 = (θ1, 0). The vector pa is given by pa = pc + p1. Next

the second plane in the problem, the plane (2d|b), can be specified by a rotation around

the z axis by an angle φ from the plane (1c|a), such that the vectors n1a and n2b intersect

with an angle φ between them. We note that the two planes now intersect along the z

axis by construction. Note that the vector pd = −pc lies along the negative z axis. The

direction of p2, which lies in the (2d|b), can likewise be fixed by introducting the polar angles

Ω2 = (θ2, φ). pb is now given through pb = pd + p2. In summary, we can set, in the 3RF,



























































pc = (0, 0, pc), pc = pi

pd = (0, 0, pd), pd = −pi

p1 = p1(sin θ1, 0, cos θ1)

pa = (p1 sin θ1, 0, p1 cos θ1 + pi)

p2 = p2(sin θ2 cosφ, sin θ2 sinφ, cos θ2)

pb = (p2 sin θ2 cosφ, p2 sin θ2 sin φ, p2 cos θ2 − pi)

(22)

It can be shown that the eqations (20b), (20c) and (20d) are well satisfied by the construction

above, i.e. the expressions (22) above satisfy (20). There are six parameters, pi, p1, θ1, p2,

θ2 and φ, in the problem. Excluding pi which is given by
√
s, there are just five parameters

in the 3-body phase-space, as expected. This completes the full specification of the reaction

(1) in the 3RF.

The invariant phase-space formula takes on the form, in the 3RF,

dΦ3 =

(

d 3
p1

2E1

)(

d 3
p2

2E2

)

(23)

dropping the multiples of (2π) factors. The differential phase-space element for the particle

3 does not appear since p3 = 0. Using (22), we see that

dΦ3 =

(

1

2E1

)

p21dp1 dcos θ1

(

1

2E2

)

p22dp2 dcos θ2 dφ (24)

and

E1 =
√

p21 +m2
1 and E2 =

√

p22 +m2
2

(25)

where p1 and p2 are once again evaluated in the 3RF.
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It is not usual that one evaluates a phase-space element in the rest frame of a final-

state particle; we have taken advantage of the fact that the equations (23) and (24) are both

Lorentz-invariant expressions, and our development anticipates the partial-wave analyses to

be done on the decay of the particle 3, which must be carried out in its rest frame, i.e. in the

3RF.

3 Regge Phenomenology

Here we write down the production amplitudes of Reaction (1), but following the stan-

dard prescription for introducing the Reggeized amplitudes. We introduce below two Regge

trajectories denoted by the subscripts i and k, but they may very well be the same, i.e. that

of the Pomeron

αi(t) = αk(t) = α(t) = α0 + α′ t (26)

where α0 = 0.081–1.112 and α′ = 0.25 GeV−2.

The production amplitudes may be written[3], denoting by |jm〉 the spin state of the

particle 3 in the 3RF,

jmT λ1 λ2

λa λb
(ab → 1 + 3 + 2) =

∑

i k

Gλa λ1
(tc)

(

s13

s0

)αi(tc)

ξ[αi(tc)] × jmGik(tc, td, φ)

×Gλb λ2
(td)

(

s23

s0

)αk(tc)

ξ[αk(td)]

(27)

where s0 = 1.0 GeV2 a standard constant of Regge phenomenology. Once again, the sum on

{i, k} refers to the possible Regge exchanges at the upper and lower vertices, respectively.

The vertex functions Gλa λ1
(tc) and Gλb λ2

(td) refer to the decay vertices (1c|a) and (2d|b),
while jmGik(tc, td, φ) refers to the time-reversed decay of (cd|3), see Figs. 1 and 2. The

functions ξ[α(t)] are the signature factors, given by

ξ[α(t)] = −1 + σ e−i π α(t)

sin πα(t)
(28)

where σ is the signature; if i and k both refer to the Pomeron, then we have σi = σk = σ = +1.
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4 Decay Amplitudes

Our task here is to work out the decay amplitudes in the 3RF, i.e. a → 1 + c, b → 2 + d

and 3 → c+d. For the topics covered here, the reader may consult the references [4] and [5].

For the plane (1c|a), we go to the aRF from the 3RF and take the canonical axes, i.e.

we take the same coordinate system defined in the previous section. here we consider the

tow-body decay a → 1+ c. The decay amplitude is, denoting the decay-coupling amplitudes

by F,

A(a → 1 + c) ∼ jaF
j1 jc
λ1 λc

d
ja
λa, λ1−λc

(θ′1) (29)

where Ω′
1 = (θ′1, 0) and θ′1 is the angle between ~a in the (a+b)RF and the vector p′1 in the

aRF, reached via pure time-like Lorentz transformation from the (a+b)RF. By the identical

procedure, we can write down the decay amplitude for b → 2 + d, again in the bRF and

defined in the plane (2d|b), denoting the decay-coupling amplitudes again by F,

A(b → 2 + d) ∼ jbF
j2 jd
λ2 λd

D
jb∗
λb, λ2−λd

(Ω′
2) (30)

where the angles Ω′
2 = (θ′2, φ) is defined such that φ ia still the same angle defined in the

previous section but θ′2 is the angle between ~b in the (a+b)RF and the vector p′2 in the

bRF. We note that the spin components λa and λb are the helicities along ~pa and ~pb in the

(a+b)RF.

We now work on the problem of writng down the amplitude for the process c + d → 3.

For the purpose we deal with the time-reversed process 3 → c+ d. The relevant vectors are

already defined (22). We are ready to work out the decay process 3 → c + d in the 3RF:

A(3 → c+ d) ∼ jF
jc jd
λc λd

D
j ∗
m, λc−λd

(0, 0, 0) = jF
jc jd
λc λd

(31)

where F is once again the decay-coupling amplitude, and Ω0 = (0, 0) specifies the orientation

of the vector ~pc or −~pd in the 3RF just defined. The D-function is zero unless m = λc − λd,

where m is the spin component of 3 in this frame. Here we emphasize that the “body-

fixed” helicites λc and λd are those defined (29) and (30); it is for this reason that the same

notations are used for both.

The overall amplitude is the product of the three amplitudes defined above

Aj
m(Ω

′
1,Ω

′
2) =

∑

jc jd

∑

λcλd

A(a → 1 + c)A(b → 2 + d)A†(3 → c+ d) (32)
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where we have introduced a Hermitian conjugate of A(3 → c + d) to represent the time-

reversed process c+ d → 3. Note that the particles a, b, 1 and 2 are external particles; their

helicities will be summed over at the cross-section level after taking the absolute square of

the amplitudes. We should emphasize that the three sets of angles Ω0, Ω
′
1 and Ω′

2 are all

defined three Lorentz frames as specified previously. We note in addition that there is a

summation over the spins jc and jd. However, they will be transformed beyond recognition

by the process of Reggeization of the exchanged particles. There still remains the possible

choice of the spin sets. For example, if we suppose that the Pomerons are responsible for

both, then the possible spin-parity sets are JPC = 2++, 4++ or 6++, or 2++ only for simplicity

to represent the Pomeron state.

The helicity-coupling amplitudes F satisfy the following relationship from parity conser-

vation in the decay |jm〉 → |s1 λ1〉+ |s2 λ2〉

jF s1 s2
−λ1 −λ2

= ηj η1η2 (−)j−s1−s2 jF s1 s2
λ1 λ2

= νj ν̄1ν̄2
jF s1 s2

λ1 λ2

(33)

where ηk is the intrinsic parity with k = { j, 1, 2 }, and νk and ν̄k are the ‘naturality’ of the

particle k,

νk = ηk(−)jk , ν̄k = ηk(−)−jk for bosons and fermions (34)

where νk and ν̄k are real for bosons and imaginary for fermions. The two-body decay pro-

cesses, j → 1 + 2, always involve three particles, in which zero or two can be fermions but

all three can never be fermions. As a result, a product of two ν’s must be real such that

νj ν̄1 = ±1 or νj ν̄2 = ±1 or ν̄1 ν̄2 = ±1

This covers all the cases of fermions in the problem, and as a result we see that the factor

in (33) must obey

νj ν̄1ν̄2 = ±1

which is as expected.

We note that the coupling constants F ’s can made real under certain general conditions

(time-reversal invariance), see Section 5.2 of Reference[5].

Finally, we give here the angles θ′1 and θ′2 in terms of the Lorentz-invariant variables in

10



the problem. We start with

aRF →



































s = (pa + pb)
2 = m2

a +m2
b + 2maE

′
b → p′b =

√

(E ′
b)

2 −m2
b

tc = (pa − p1)
2 = m2

a +m2
1 − 2maE

′
1 → p′1 =

√

(E ′
1)

2 −m2
1

E ′
g = ma + E ′

b

p
′
g = p

′
b = p

′
1 + p

′
3 + p

′
2

(35)

We see that, from (2),

s23 = (p2 + p3)
2 = (pg − p1)

2

aRF → = s+m2
1 − 2(E ′

g E
′
1 − p′g p

′
1 cos θ

′
1)

= s+m2
1 − 2

[

(ma + E ′
b)E

′
1 − p′b p

′
1 cos θ

′
1

]

(36)

In summary, the angle θ′1 depends on three variables s, tc and s23. Likewise, we note that

bRF →



































s = (pa + pb)
2 = m2

a +m2
b + 2mb E

′
a → p′a =

√

(E ′
a)

2 −m2
a

td = (pb − p2)
2 = m2

b +m2
2 − 2mb E

′
2 → p′2 =

√

(E ′
2)

2 −m2
2

E ′
g = mb + E ′

a

p
′
g = p

′
a = p

′
1 + p

′
3 + p

′
2

(37)

We see that, again from (2),

s13 = (p1 + p3)
2 = (pg − p2)

2

bRF → = s+m2
2 − 2(E ′

g E
′
2 − p′g p

′
2 cos θ

′
2)

= s+m2
1 − 2

[

(mb + E ′
a)E

′
2 − p′a p

′
2 cos θ

′
2

]

(38)

So the angle θ′2 can be evaluated from s, td and s13.

We remark that the angles θ′1 and θ′2 are determined through their cosines, so the angles

can be evaluated in the range {0 → π}.

5 Reggeized Production Amplitudes

We now combine the results of Sections 3 and 4 and write down the Reggeized production

amplitudes. For the purpose we modify (32) to conform to the double-Reggeon exchange

11



amplitude (27)

Aj
m(Ω

′
1,Ω

′
2) =

∑

i k

∑

jc jd

∑

λcλd

A(a → 1 + c)Bi(tc)

(

s13

s0

)αi(tc)

ξ[αi(tc)]

× A†(3 → c+ d)

×
(

s23

s0

)αk(td)

ξ[αk(td)]A(b → 2 + d)Bk(td)

(39)

Here we have suppressed helicity indices in A for clarity. The three amplitudes A(a), A(b)

and A(3) play the role of the vertex functions G defined in (27).

The functions Bi(tc) and Bk(td) are phenomenological t dependence we introduce, setting

t′ = |t| − |t|min,

Bi(tc) =

(

t′c
t0c

)−|λc|/2

and Bk(td) =

(

t′d
t0d

)−|λd|/2

where λc − λd ≡ m (40)

where the ket state |jm〉 stands for the spin state of the particle 3 in its rest frame. Here

t0c = t0d = +1.0 GeV2 (phenomenological). But, according to Boreskov[2], they are quite

different,

Bi(tc) =

(−tc

s13

)−|λc|/2

and Bk(td) =

(−td

s23

)−|λd|/2

(41)

Together with the sub-energy dependent factors in (39), following Boreskov, we see that the

overall t dependence is, with α = α0 + α′t′,

Aj
m(Ω

′
1,Ω

′
2) ∼

∑

λc λd

A(a → 1 + c) ξ[α(tc)]

(−tc

s13

)−|λc|/2

exp

[

− ln

(

s13

s0

)

(α0 i + α′
i t

′
c)

]

×A†(3 → c+ d)

× A(b → 2 + d)ξ[α(td)]

(−td

s23

)−|λd|/2

exp

[

− ln

(

s23

s0

)

(α0 k + α′
k t

′
d)

]

(42)

where λc − λd = m and assuming i = k and suppressing the summation over i and k for

clarity. We now replace the amplitudes A(a → 1+ c), A†(3 → c+ d) and A(b → 2 + d) with

12



the decay amplitudes given in Section 4, and obtain

Aj
m(Ω

′
1,Ω

′
2) ∼

∑

i k

∑

λc λd

jaF
j1 jc
λ1 λc

d
ja
λa, λ1−λc

(θ′1) ξ[α(tc)]

(−tc

s13

)−|λc|/2

× exp

[

− ln

(

s13

s0

)

(α0 i + α′
i t

′
c)

]

jF
jc jd
λc λd

× jbF
j2 jd
λ2 λd

D
jb∗
λb, λ2−λd

(φ, θ′2, 0)

× ξ[α(td)]

(−td

s23

)−|λd|/2

exp

[

− ln

(

s23

s0

)

(α0 k + α′
k t

′
d)

]

where λc − λd = m

(43)

Here we note that, if we take the helicity-coupling amplitudes F to be real, then the complex

nature of the expression above comes from the factor exp[i λb φ] contained in the D-function

above and the signature factors ξ[α(tc)] and ξ[α(td)]. We impose parity conservation in the

decay through the following technique

Aj
m(Ω

′
1,Ω

′
2) =

1

2
[(original) + (λk → −λk and m → −m)] , k = {a, b, 1, 2, c, d}

∼ 1

2

∑

i k

∑

λc λd

jaF
j1 jc
λ1 λc

d
ja
λa, λ1−λc

(θ′1) ξ[α(tc)]

(−tc

s13

)−|λc|/2

× exp

[

− ln

(

s13

s0

)

(α0 i + α′
i t

′
c)

]

jF
jc jd
λc λd

× jbF
j2 jd
λ2 λd

D
jb ∗
λb, λ2−λd

(φ, θ′2, 0)

× ξ[α(td)]

(−td

s23

)−|λd|/2

exp

[

− ln

(

s23

s0

)

(α0 k + α′
k t

′
d)

]

+
1

2

∑

i k

∑

λc λd

jaF
j1 jc
−λ1 −λc

d
ja
−λa,−λ1+λc

(θ′1) ξ[α(tc)]

(−tc

s13

)−|λc|/2

× exp

[

− ln

(

s13

s0

)

(α0 i + α′
i t

′
c)

]

jF
jc jd
−λc −λd

× jbF
j2 jd
−λ2 −λd

D
jb∗
−λb,−λ2+λd

(φ, θ′2, 0)

× ξ[α(td)]

(−td

s23

)−|λd|/2

exp

[

− ln

(

s23

s0

)

(α0 k + α′
k t

′
d)

]

(44)

where λc−λd = m. Applying parity conservationin in the decay vertices and the well-known

formula for djm,m′(θ) under interchange of m → −m and m′ → −m′, and noting that jc and

13



jd must be integers always, we obtain

Aj
m(Ω

′
1,Ω

′
2) ∼

∑

i k

∑

λc λd

jF
jc jd
λc λd

× 1

2

{

exp(i λbφ) + exp(−i λbφ) (νa ν̄1) (−)λa−λ1 (νb ν̄2) (−)λb−λ2 ν(−)m
}

× jaF
j1 jc
λ1 λc

d
ja
λa, λ1−λc

(θ′1) ξ[α(tc)]

(−tc

s13

)−|λc|/2

× exp

[

− ln

(

s13

s0

)

(α0 i + α′
i t

′
c)

]

× jbF
j2 jd
λ2 λd

d
jb
λb, λ2−λd

(θ′2) ξ[α(td)]

(−td

s23

)−|λd|/2

× exp

[

− ln

(

s23

s0

)

(α0 k + α′
k t

′
d)

]

(45)

where once again λc − λd = m and ν is the naturality of the system 3 in a state |jm〉. Here
we have taken into account the fact that the particle pairs (a, 1) and (b, 2) can be either

both fermions or both bosons but never a mixture, while the three particles (c, d, 3) are

always neutral bosons with integer spins. We have carefully arranged the six factors which

accompany exp(−i λbφ) such that each of them is always an integer=±1 and therefore the

product of the six factors is equal to ±1 overall. We need to point out that the factors

νa ν̄1 = +1 and νb ν̄2 = +1

If the identity of the initial and final particles does not change (most of the practical examples

for central production falls into this category). The exceptions are, for example, (a, 1)

corresponds to (p,∆+) or (π−, ρ−) in which case νa ν̄1 = −1, and the same applies to νb ν̄2 =

−1. The first factor of (45) shows that the φ dependence is given either by cosφ or by i sinφ;

the precise functional dependence depends on the helicities and the naturalities as shown in

the curly brackets. This is the main result of this note.

We remark that, if the production for 3 is dominated by the Pomerons with JPC = 2++,

then we can set jc = jd = 2 and furthermore λc = λd = 0 as a first approximation, i.e. the

states with |jm〉 for which m = ±1 is relatively small compared to those with m = 0. Then

14



we obtain

A
j
0(Ω

′
1,Ω

′
2) ∼ jF 2 2

0 0

× 1

2

{

exp(i λbφ) + exp(−i λbφ) (νa ν̄1) (−)λa−λ1 (νb ν̄2) (−)λb−λ2 ν

}

×
{

jaF
j1 2
λ1 0

d
ja
λa, λ1

(θ′1) ξ[α(tc)]

× exp

[

− ln

(

s13

s0

)

(α0 + α′ t′c)

]

× jbF
j2 2
λ2 0

d
jb
λb, λ2

(θ′2) ξ[α(td)]

× exp

[

− ln

(

s23

s0

)

(α0 + α′ t′d)

]

}

(46)

where we have taken out the helicity-coupling constant (and real) jF 2 2
0 0 out in front, to

indicate that this is the only j-dependent factor in the formula. In other words, the expression

within the second curly bracket is independent of j and hence it is merely a proportionality

factor. But we emphasize, however, that it does depend on the naturality ν of the central

system 3 (note that ν = +1 always if the decay product of 3 consists of two pseudoscalars.)

It is clear that all the physics in the central production is contained within the curly

brackets, and the spin-density matrix is simply a bilinear product of unknown real constants

jF 2 2
0 0 for different j’s. So the spin density-matrix is real and of rank-1, but the elements are

unknown. We note that, with w standing for the effective mass of 3, the cross section is

proportional to

dσ ∼
∑

λa λb
λ1 λ2

∫
(

p′1
2dp′1d cos θ

′
1

2E ′
1

)

aRF

(

p′2
2dp′2d cos θ

′
2dφ

2E ′
2

)

bRF

∣

∣

∣
A

j
0(Ω

′
1,Ω

′
2)
∣

∣

∣

2

∼
∑

λa λb
λ1 λ2

∫
(

dκ2
1dq

′
1

2E ′
1

)

aRF

(

dκ2
2dq

′
2dφ

2E ′
2

)

bRF

∣

∣

∣
A

j
0(Ω

′
1,Ω

′
2)
∣

∣

∣

2
(47)

where the Lorentz invariance of the two-dimensional vectors ~κ1,2 along the direction of ~pa+~pb

has been used above, since they are perpendicular to the direction of the Lorentz transfor-

mation. We require the vector ~κ1 to point along the x-axis and the vector ~κ2, which lies

in the xy-plane, to have an angle φ from the x-axis. Note that q′1(q
′
2) is the longitudinal

15



momentum of ~p1(~p2) evaluated in the aRF(bRF). We recall that tc ≃ κ2
1 and td ≃ κ2

2, so that

G(w, tc, td, φ) ∼
dσ

dtc dtd dφ

∼
∑

λa λb
λ1 λ2

∫
(

dq′1
2E ′

1

)

aRF

(

dq′2
2E ′

2

)

bRF

∣

∣

∣
A

j
0(Ω

′
1,Ω

′
2)
∣

∣

∣

2 (48)

We emphasize here that the phase-space factor for the particle 1(2) is evaluated in the

a(b)RF; thus we have taken advantage of the Lorentz invariance of the phase-space factors—

the first factor in the aRF and the second in the bRF—a highly unusual formulation of the

problem adapted in this note. The integration above is considerably facilitated by noting

that, simply rewriting (46),

A
j
0(Ω

′
1,Ω

′
2) =

jF 2 2
0 0

×
{

ξ[α(tc)] × exp

[

− ln

(

s13

s0

)

(α0 + α′ t′c)

]}

×
{

ξ[α(td)] × exp

[

− ln

(

s23

s0

)

(α0 + α′ t′d)

]}

× 1

2

{

exp(i λbφ) + exp(−i λbφ) (νa ν̄1) (−)λa−λ1 (νb ν̄2) (−)λb−λ2 ν

}

×
{

jaF
j1 2
λ1 0

d
ja
λa, λ1

(θ′1)
∣

∣

∣

aFR
× jbF

j2 2
λ2 0

d
jb
λb, λ2

(θ′2)
∣

∣

∣

bFR

}

(49)

So the A function has been broken up into four factors, and is shown as curly brackets above.

The first factor depends on φ only; the second and the third on tc and td, respectively; Only

the fourth factor is dependent on q′1 and q′2, the variables of integration indicated in (48).

For completeness, we exhibit (45) again here, the general formula for A in which the

helicities for c and d are allowed to take on arbitrary values, but modified to highlight

differences in the factors

Aj
m(Ω

′
1,Ω

′
2) ∼

∑

i k

∑

λc λd

jF
jc jd
λc λd

× 1

2

{

exp(i λbφ) + exp(−i λbφ) (νa ν̄1) (−)λa−λ1 (νb ν̄2) (−)λb−λ2 ν(−)m
}

×
{

jaF
j1 jc
λ1 λc

(−tc

s13

)−|λc|/2

× ξ[α(tc)]×exp

[

− ln

(

s13

s0

)

(α0 i + α′
i t

′
c)

]}

×
{

jbF
j2 jd
λ2 λd

(−td

s23

)−|λd|/2

× ξ[α(td)×exp

[

− ln

(

s23

s0

)

(α0 k + α′
k t

′
d)

]}

×
{

d
ja
λa, λ1−λc

(θ′1)
∣

∣

∣

aRF
× d

jb
λb, λ2−λd

(θ′2)
∣

∣

∣

bRF

}

(50)
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with the constraint m = λc − λd. This is a general formula which can be applied to any

Regge exchanges for c and d with arbitrary helicities. The formula consists of four curly

brackets: the first depends on φ only; the second and the third on tc and td, respectively;

and the fourth on the the longitudinal momenta for the particles 1 and 2.

The next level of approximation e would involve setting λc = ±1, λd = ±1 m = ±1

subject to the constraint m = λc − λd. One obvious way to achieve this would be to set, for

m = 0,±1,

{m, λc, λd} = {1, 1, 0} and {1, 0,−1}
= {0, 0, 0}, {0, 1, 1} and {0,−1,−1}
= {−1,−1, 0} and {−1, 0, 1}

(51)

6 Spin-Density Matrix for Particle 3

We now let τ to stand the decay of 3 into n ≥ 2 particles. Then the overall amplitude

for the production and decay of a system 3 is

Aj
m(w,Φ3, τ) = Aj

m(Ω
′
1,Ω

′
2)A

j ∗
m (τ) (52)

where w is the effective mass of the system 3. The phase-space factor Φ3 is the usual Lorentz-

invariant element which depend on the angles Ω′
1 and Ω′

2 as well as appropriate momenta to

fully specify the production process. If we make the simplifying assumption that the decay

amplitude Aj ∗
m (τ) does not depend on the production variables except the mass w, then we

may write

Aj
m(w,Φ3, τ) = Aj

m(Ω
′
1,Ω

′
2)A

j ∗
m (w, τ) (53)

So we have made an assumption that the amplitude Aj ∗
m (w, τ) does not depend on any of the

production variables in Aj
m(Ω

′
1,Ω

′
2). This cannot be true in general but merely a practical

simplification.

e We know that at ∼ 10% level there are λ = ±1 components present in the COMPASS data.
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The differential cross section is, summing over the ‘external’ helicities,

dσ

dτ
∼

∑

λa,λb
λ1,λ2

∫

dΦ3

∣

∣

∣

∣

∣

∑

j m

Aj
m(w,Φ3, τ)

∣

∣

∣

∣

∣

2

∼
∑

λa,λb
λ1,λ2

∑

j m

j′ m′

∫

dΦ3 A
j
m(Ω

′
1,Ω

′
2)A

j∗
m (w, τ)Aj′ ∗

m′ (Ω
′
1,Ω

′
2)A

j′

m′(w, τ)

∼
∑

λa,λb
λ1,λ2

∑

j m

j′ m′

Aj ∗
m (w, τ)Aj′∗

m′ (w, τ)

∫

dΦ3 A
j
m(Ω

′
1,Ω

′
2)A

j′∗
m′ (Ω

′
1,Ω

′
2)

(54)

where the differential element of the phase dΦ3 has already been given in (23) and (24). So

we have come up with a reasonable model for the production and decay of the system 3. We

may define the spin-density matrix in the ususal way

ρ∗jm; j′m′ =
∑

λa,λb
λ1,λ2

∫

dΦ3 A
j
m(Ω

′
1,Ω

′
2)A

j′ ∗
m′ (Ω

′
1,Ω

′
2) (55)

From (48) we see that the expression above becomes

ρ∗jm; j′m′(tc, td, φ) ∼
∑

λa,λb
λ1,λ2

∫
(

dq′1
2E ′

1

)

aRF

(

dq′2
2E ′

2

)

bRF

Aj
m(Ω

′
1,Ω

′
2)A

j′ ∗
m′ (Ω

′
1,Ω

′
2) (56)

Note that the decay coupling constants jaF
j1 jc
λ1 λc

, jbF
j2 jd
λ2 λd

, jF
jc jd
λc λd

(for different j’s) are un-

known, so one can only explore the range of density matrix assuming certain values for the

coupling constants. The amplitudes Aj
m and A

j′

m′ above have internal summation on λc and

λd with m = λc − λd, and on λ′
c and λ′

d with m′ = λ′
c − λ′

d.

The formula (34) can be given in a compact expression in terms of the density matrix

dσ

dτ
∼

∑

j m

j′ m′

ρjm; j′m′ Aj ∗
m (w, τ)Aj′

m′(w, τ) (57)

Note that we have here taken a complex conjugate of (34).

The remaining task is to carry out the integral in (56) and find out what terms are

important after the phase-space integral, and thus gain insight into the process of 2- to

3-body reactions for a partial-wave anlysis of the central system 3.
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7 Conclusions

We have here worked out the sub-energy formula at three levels of approximations:

(a) the formula (15a) at the first-level approximation;

(b) the formula (15b) at the second-level approximation;

(c) the formula (19) at the third-level approximation.

It is the third-level approximation which is widely quoted in the literature, see [2] and [3].

The formula (19) is not very well satisfied at COMPASS energies. Even with (15), the first-

level approximation, the equality is violated at (≃ 3.0GeV)4. So, from this point of view, it

appears that the central production cannot be defined through (15a), (15b) or (19). Or, to

put it in other words, the COMPASS energy is simply not high enough for the conditions of

central production, conventionally defined and spelled out in Section 1, to be valid.

But for a study of light-quark spectroscopy the formula (19) should be well statisfied for

ALICE. If the Roman pots were available for ALICE, a program of light-quark spectroscopy

of mesons with mass less than 3.0 GeV can be carried out—with an enormous increase in

sensitivity for the light-quark mesons in the range 2.0 GeV–3.0 GeV, which are still poorly

known. It is possible, in addition, that the spectroscopy of charmonium states, in the mass

range of 3.0 to 4.5 GeV, could be handled as well with the ALICE detector, competitive

with other experimental facilities elsewhere in the world.

The spin-density matrix is given in (55) and the general formula for the amplitudes

Aj
m is given in (50). We emphasize that the decay coupling constants jaF

j1 jc
λ1 λc

, jbF
j2 jd
λ2 λd

and

jF
jc jd
λc λd

are unknown; so explicit expressions for the spin-density matrix cannot be calculated.

However, a great deal of insight could be gained by studying the matrix for assumed values

of F ’s as a function of tc, td and φ, as given in (56).
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Appendices:

A Boreskov Treatment

Here we retrace a few essential elements of a paper by Boreskov[2]. In the overall CM

system, i.e. the rest frame of pa + pb, he sets up a coordinate system with the z-axis along

−~p3 and assigns the vector ~pa to lie in the (xz)-plane. In this frame, the vector ~p1 has the

polar angles (ϑ2, φ). In summary, we have

~pa = pa(ϑ1, 0) ~pb = pa(π − ϑ1, π)

~p3 = p3(π, 0) ~p1 = p1(ϑ2, ϕ) ~p2 = −~p3 − ~p1

(A.1)

The plane formed by ~p1, ~p3 and ~p2 can be thought of as the (xz)-plane rotated by ϕ around

the z-axis. Our coordinate system is very different from this setup. He writes down the

production amplitude as follows:

T =
∑

j1 j2m2

d
j1
m1Λ1

(ϑ1)D
j2 ∗
m2 Λ2

(ϕ, ϑ2, 0) T (j1; j2)

=
∑

j1 j2m2

d
j1
m1Λ1

(ϑ1) e
im2ϕ d

j2
m2 Λ2

(ϑ2) T (j1; j2)
(A.2)

where

cos ϑ1 =
(td −m2

2 − tc)(tc +m2
1 −m2

a)− 2tc(s13 −m2
3 −m2

1)

∆(tc, td, m2
3)∆(tc, m2

a, m
2
1)

cos ϑ2 =
(tc −m2

3 − td)(tc +m2
2 −m2

b)− 2td(s23 −m2
2 −m2

3)

∆(tc, td, m2
3)∆(td, m2

b , m
2
2)

∆(x, y, z) = (x2 + y2 + z2 − 2xy − 2xz − 2yz)1/2

(A.3)

(simply transcribed from the Boreskov paper—not checked independently).
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The high-energy limit ( the Regge picture) is attained by setting cos(ϑ1) → ∞ and

cos(ϑ2) → ∞ which lead to the conidtions

−tc ≫ −tcmin = −2(m2
1 −m2

a)(m
2
3 − td)

s13
, ma 6= m1

= −me
(m2

3 − td)
2

s213
, me = ma = m1

−td ≫ −tdmin = −2(m2
2 −m2

b)(m
2
3 − tc)

s23
, mb 6= m2

= −mf
(m2

3 − tc)
2

s223
, mf = mb = m2

(A.4)

(simply transcribed from the Boreskov paper—not checked independently).

We note here that the angles in cosϑ1 and cosϑ2 are very different from those which

appeared in Section 3.
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