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abstract

A detailed explanation is given on the transformation properties of the opera-
tors corresponding to the intrinsic parity P and the charge-conjugation C, acting
on a qq + g wave function in the flux-tube model.

The formalism thus developed for the flux-tube model is applied to the first
and second vibrational modes of the flux tube. The hierarchy of JF¢ = 1+
exotic mesons, predicted in the flux-tube model, as well as an intriguing role
played by JP¢ = 0~ exotic mesons, is presented.
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1 Introduction

The flux-tube model, pioneered by Isgur and Paton[1], has become the most successful
phenomenological model for the mesons which contain gluonic excitations. The purpose of
this note is to elaborate on certain aspects of their model to make it more accessible to

experimental physicists—like me.

One of the key innovations of this note is to introduce two quantum numbers for the
string excitations, the phonon number N which governs the string energy—and hence the
mass shift due to the valence gluon—and the string helicity A (which they have already
introduced). It is argued that a ket state corresponding to the string excitation could be
denoted | N A), with little loss of information, in the phenomenological approach suitable for

experimentalists.

From a host of exotic mesons predicted in the flux-tube model, we concentrate on two
types—JF¢ = 17" and JP¢ = 0~~—and show that the second mode of string excitation
leads naturally to the two types being produced with their mass close to each other but very
high, probably in 3.8-4.2 GeV range.

2 Conventional Mesons and Beyond

Let L and S be the orbital angular momentum and the total intrinsic spin of a ¢q system.

Let s; and s, be the spins of ¢ and ¢, i.e. s; = s = 1/2. Then, one readily finds

j:E+§ and §:H1+§2 (1)
and
P= ()"
C = (=)-S (2)
PC = (—)5*t
g

and the wave function in a state of J, L and
2L +1
TMLS) = /2252 ST (symy symsl Smy) (Smy LM, | TM)
4 v
N (3)
X /dQ DJI\//;LI( 0(¢a 01 0) |Qa §11M 82m2>

is given by
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where M is the z-component of spin J in a coordinate system given in the rest frame of ¢q
and Q = (0, ¢) specifies the direction of the breakup momentum in this rest frame. We use
the notation (jimq joms|jm) to denote the usual Clebsch-Gordan coefficients. The formula
given here is of course elementary; I will show later how this can be generalized to include a

gluonic meson: ¢g + gluon.

Given a set of relations (1), one finds that the following states are not allowed for a ¢
system, i.e

JPC =0, o, 17f, 2F, 37F ... (4)

In this note the exotic mesons listed above are designated using the following notation:

I¢(JPC) Exotics | I¢(JFC) Exotics
17(077) 00 0=(0—7) Wo
17(07) bo 0=(0"7) hg
@) om [ 0TATT) om
17(27) by 0-(27) hs
17(371) 3 0t(37%) 3

3 Hybrid mesons

In the flux-tube model pioneered by Isgur and Paton[1] and further developed by others[2],
an excited gluon in ¢g + gluon is described by two transverse polarization states of a string,
which may be taken to be clockwise and anticlockwise about the ¢g axis. Let n'; [nH]
be the number of clockwise (anticlockwise) phonons in the mth mode of string excitation.?

(-+) (=)

Evidently, we must have n;,° = ny’ = 0 for m = 0, corresponding to the ground-state (or

hidden) gluon string.®

2 In the continuum limit, the transverse string displacement is proportional to y,,(£) = sin (mn§), where £
goes from 0 to 1 along a straight line (the z-axis) connecting the two quarks.

b This is not true in the flux-tube model (private communication, P. Page). Both ordinary quarkonia and
gluonic hybrids are endowed with strings, and so m ranges from 1 to m(max) in all cases. However, we
allow m = 0 to indicate a cross-over to the ‘conventional’ quark model with absence of strings.



Two important quantities are defined from these

A=Z[n£,;”—n£;)]
N = Z ntH + 1)

It is clear from the definition that A is the helicity of the flux tube along the ¢g axis. The

(5)

number N is a new quantity; it will be given the name ‘phonon number’—as it represents
the sum of all the phonons in the problem weighted by the mode number m. The N should
properly be called the ‘phonon energy number,” because the string excitation energy is given
byf[1]

E(string) oc ---+ N + - - - (6)
in the continuum approximation.® Note that, for the ground-state gluon string or m = 0,
one has A= N =0.

A hybrid state with momentum k along the ¢ axis, defined in the ¢ rest frame, may be
written
|k qiy; {n5), ()} N A) (7)
It should be emphasized that a complete vibrational degrees of freedom of the string is spec-
ified by the set {ng,}F ), N )} only, but it is convenient to introduce two additional quantities
N and A in the specification of a ket state. N was not included as a member of the labels
specifying a wave function in the original paper of Isgur and Paton[l]. However, N plays
an important role as seen later, and thus—in this note—it has been included along with A.
In the formula above, the quark labels 7 and j refer to the flavor. Thus, limiting oneself to

light quarks only, one may set

{QquZ;q?;} = {’U,,d, S} (8)

Isgur and Paton[l] show that a state of total orbital angular momentum L with its

z-component M, is given by
2L +1

47 (9)
8 / dQ Dy (6,6,0) 195 ¢:g;; {n), n{)} N A)

|LMyz; ¢ {n$),n{)} N A) =

¢ This result is obtained by inserting Eq.(18) into Eq.(19) in Ref. [1]. Their Eq.(19) reduces Eq.(18) in the
limit m(max) — co or m << m(max); this is the continuum limit.



where Q(6, ¢) describes the direction k. Note that this is very similar to the description of

a two-body system in the helicity formalism[3].¢

The complete wave function is now given by
[TM; qig;{niD, nl,)} N A)
= Z (LM, Smy|JM) |LMy, Smy; q;g;; {n5,nl)} N A)

MLms

(10)

where
|LMy, Smy; gig;;{nsP, n{,)} N A)

= Y (s1ma sma|Smy) |LMy; iy {nl), n)} N A)

mims2

(11)

and again s; = so = 1/2 for ¢; and g;. These formulas show that the counterpart of the wave

function (3) in the case of gluonic hybrids is, suppressing the indices for quark flavors,

|JMLS {n{H nl )} NA) = Z (s1my sema|Smy) (Smg LM|JM)

mme (12)
x /dQD%A(@ 8,0) |2, s1mu; semyg; {n&D, ni)} N A)

There are a set of five rotational invariants specifying a state in the flux-tube model, i.e. J,

L, S, N and A.®

Denoting by P and C the operators corresponding to parity and charge conjugation, the

hybrid states of a given L and S transform according to
P |Lm Sms; gis; {niy), nl} NA) = ()" [Lm Smg; q:gy; {n), ni)} N, =) 13)
C|Lm Smy; ¢;g;; {ntH 0} N A) = (=) N | L Smyg; q;i; {nl), niD} N, —A)

One sees that, if m = 0 (no phonons) and 7 = j (neutral nonstrange states), then the ket

states are in eigenstate of P and C. The corresponding eigenvalues P and C' are as given in

(1), so that one has PC = (—)5*!. The transformation law under the combined operation is

P C|Lm Smys; ¢;gj; {ng),ng)}NA) = (=)5*N* Lm Smy; 4 {nﬁj),nsn’)}NA> (14)

4 The reader will note that our definition of the L state is different in two respects: 1) The Euler angles
are (¢,6,0) and not (¢,0,—¢); 2) The rotation functions appear as D* and not just D. It is seen that
our definitions confirm to the convention adopted in Chung’s CERN Yellow Report.

¢ Strictly speaking, only the quantity |A| is rotationally invariant (private communication, P. Page).



The corresponding eigenvalue reduces to the usual one for N = 0, as expected.

The hadrons, including hybrids, must come in eigenstates of P and, for neutral nonstrange

members, in eigenstates of C. So the proper state of a hybrid must be written, with ny = +1,

‘Lm Sms; Qi(?ﬁ {n$n+)7 ng,;)} To NA>

(15)
= qp [\Lm Sms; ¢:iGj; {ng),ng)}NA) + 1o | Lm Smy; ¢;G;; {nﬁ;),n%‘f)}N —A)}

where aq is the normalization constant given by 1/2, if the first and the second terms above
are equal, i.e.

{ni) 0} = {nl,),niP} (16)

m
(A necessary consequence of this is that A = 0.) and it is given by 1/4/2 otherwise. The
actions of P and C on the new states are
P |Lm Smy; g:q;; {n,n) o N A)
=10 (=)" M Lm Smy; gz {nf), n} 0 N A)

(17)
C|Lm Sms; qigj; {n),n Y no N A)
= o (=) SN L Smg; g5 {n, nG) Y o N A)
and the new eigenvalues are
P= Mo (_)L+A+1
C=n (_)L+S+A+N (18)

PC = (_)S+N+1
It clear that, from (5), (6) and (13), one must set 7y = +1 if ag = 1/2.F If in addition N =0
(or m = 0), then the formula above becomes identical to (2). The presence of 79 = +1 in
(18) leads to a decoupling of P and C' from the internal quantum numbers such as L and S
if A = 0; only the combined quantity PC' retain a link to the total intrinsic spin S = 0,1

and the phonon number N.

The lowest-order gluonic hybrid occurs evidently for one m = 1 ‘clockwise’ phonon. In
this case, n{”) =1 and n{” =0, so that A = N = 1 and PC = (—)°. Note that, from (9),
L = 0 is not allowed; so one may set L. = 1 as the first nontrivial example. The following

table summaries this case:

f This condition is met if a ket state is already in an eigenstate of P and C without the symmetrization
of (15). Evidently, A = 0 is a necessary (but not sufficient) condition (private communication, P. Page).
See also Table V.



Table I: ngﬂ =1 and ngf) =0 N=1land A=1

L| S| %% L,(qq) | J°(q) JPC(qq + 9)
10 Lp, 1+- 1+
—
111 3p, Ott, 1+, 9+ | o=t 17+ o+
0+, 1+, 2+
210 1D, 9—+ ot
-
211 3p, |17, 27,3 |17+, 27+, 3+
1=, 2+, 3+-

Thus the flux-tube model predicts, in the lowest-order gluonic excitation, a series of the
PC-doublets which must have exactly the same mass. For example, observation of an exotic

17" gluonic hybrid entails existence of a non-exotic 17~ gluonic hybrid at exactly the same

mass[4]. The isovector and the isoscalar states for the

for one m = 1 phonon with L. = 1—for the case of the table above—are predicted to have

the masses, with n = {u, d},

JPC

Constituents | JZ¢-Exotics Mass (GeV)
nn + gluon | by, hg, m1, M1, b2, ho ~ 1.9
s5 +gluon | by, hso, Ts1, Ns1, bs2, Ps2 ~ 21
cc+ gluon | beo, heoy Tery Nety bea, ez ~ 4.3
bb + gluon | by, w0, o1, M1, be2, o ~10.8

Other phonon excitations of interest are given below in tabular forms:

Table II: ngﬂ =1 and ngf) =1;N=2and A=0

L| S| %% L,(qq) | J"(qq) JFC(qq + 9)
0|0 LS, 0+ 0+

01 35, 1-- 1--

10 p, 1+- 1+-

111 3p, O+, 1H+, 2+ | o+, 1+, o+t

-exotic gluonic hybrids (¢q + g)




So this case consists only of non-exotic J¥¢’s, although the string excitations lead to higher

masses [see (6)]. Consider the following case:

Table IIT: n{" =2 and n{? = 0; N =2 and A =2

L|S|%L;(qq) | JF(qq) JPC(gq+ g)
210 1D, 9—+ 9—+
9+-

211 3D, 1=—=,27, 3 |17,2,3 "
1++’ 2+—|—7 3+t

which gives one exotic JF¢ = 2+, Next, one may consider the case with m = 2

Table IV: n{ =T and n{” = 0; N=2 and A =1

L|S|27L;(qq) | J°¢(qq) JFC(qq + g)
10 1p, 1t 1+
1—+
111 3p, O+t 1+, o+t | ot 1t ot
0=, 1-—, 2~

JPC'

This gives two exotic JFC’s, i.e. = 17 and, for the first time, a spin-zero exotic

JPC = 07". As a final example, consider a case in which m = 1 and m = 2 are mixed

Table V: ngﬂ =1and ng_) =1;N=3and A=0

L| S| %% L(qq) | J7%(qq) JPC(qq + 9)
010 1S, 0~ 0t
-
011 35, 1=~ 1t=
1—+
10 Lp, 1+- 1+
—
111 3p, Ot 1+t ot | o=t 1+, 2t
0+, 1+-, 2+




This is the first example for which A = 0 and yet the condition (16) is not satisfied, leading
to a PC-doubling. Again, for the first time, N = 3 is encountered, so the mass should be
even higher than the N = 2 case.

So far one has encountered a set of three JF¢ = 1~ exotic mesons. Two of these exotic
occur for one m = 1 phonon as shown in Table I. The ground state clearly corresponds
to the P-wave state, with the D-wave exotic meson occurring a higher mass. The P-wave
exotic state in Table IV, corresponding to one m = 2 phonon excitation, must have a mass
higher than the ground state of Table I; its mass is considered to be greater[5] than that of
the D-wave mesons of Table I, and it must be accompanied by a JF¢ = 0=~ meson with its

mass nearby.

4 Conclusions

In the flux-tube model, the string excitations contribute to the characteristics of the
resulting mesons through two quantum numbers; the string helicity A along the ¢q axis and
the phonon number N which fixes the energy of the string excitations. They have a major
effect—indeed—on the internal makeup and the external characteristics of the hybrid mesons:
one must have a PC-doubling of the resulting meson spectra under certain conditions (even
when A = 0; see Table V, for example) and, furthermore, one must have L > |A|; and N

enters in the formula for the sign of PC' and that for the mass.

The ground-state JF¢ = 1~F exotic meson corresponds to one m = 1 phonon excitation
with the P-wave orbital angular momentum between ¢ and g. The next JF¢ = 11 exotic

meson, at a higher mass, corresponds to the D-wave state. The flux-tube model predicts

(+) _ o

JPC = 17+ exotic meson resulting from three m = 1 phonons, e.g. n;

another pair of
n{?) = 1, A =1and N = 3, but their masses must be higher. It is clear that this process
continues with any odd number of m = 1 phonons such that A = +1 and N = odd. The

JPC¢ = 1= exotics arising from any odd number

model predicts, in addition, a series of
of m = 2 phonon excitations such that A = 1 and N = even. But their characteristics
is very different; instead of a pair of JF¢ = 11 exotics, one JF¢ = 1~F exotic meson is
accompanied by one JF¢ = 07~ exotic meson, with their mass very close to each other.

Other more complicated phonon structure is also possible; Table V shows an example of two



phonons of mixed m, which gives rise to two S-wave JF¢ = 07~ and JF¢ = 1= exotic

mesons.

According to the calculations of the QCD sum rule by Latorre et al.[6], a JFC = 07
(nfn + g) state should occur with mass in the range 3.8-4.2 GeV, well into the mass range

JPC = 1% exotic mesons, arising from m = 2

of charmonia. So, one may speculate that
phonons, must occur with their mass some 2.0 GeV above those resulting from m = 1
phonons. This is in sharp contrast to the mass difference expected to occur between the
JPC¢ = 17 exotic mesons with L = 1 and L = 2 in the lowest-order string excitation.
According to P. Page, the L = 2 states are 400 MeV heavier than the L = 1 states for light

quarks and 270 MeV heavier for cé states.
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